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Abstract
Faculté Sciences et Ingénierie

Master Techniques Spatiales et Instrumentation

Stochastic Optimal Trajectory Generation via Multivariate Polynomial Chaos

by Lisa Whittle

This thesis presents a framework that has been developed in order to compute stochas-
tic optimal trajectories. This is achieved by transforming the initial set of stochastic
ordinary differential equations into their deterministic equivalent by application of
Multivariate Polynomial Chaos. Via Galerkin projection, it is possible to include
stochastic information in the optimal-trajectory generation process, and to solve the
corresponding optimal-control problem using pseudospectral methods. The resul-
tant trajectory is therefore less sensitive to the uncertainties included in the analysis,
e.g., those present in system parameters, initial conditions or path constraints. The
accurate, yet computationally efficient manner in which solutions are obtained is
presented and a comparison with deterministic results show the benefits of the pro-
posed approach for a variety of numerical examples.
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Chapter 1

Introduction

1.1 Polynomial Chaos: State of the Art

Some key concepts within the field of stochastic computation will be introduced,
alongside the necessary numerical methods. A fairly comprehensive review of his-
torical development is provided, and particular emphasis is placed upon application
to trajectory optimisation.

1.1.1 Uncertainty Quantification (UQ)

Accurate dynamic modelling is crucial to the vast majority, if not all, practical ap-
plications. From areas such as structural mechanics to trajectory design, numeri-
cal analysis plays a key role in design and development, and as such, precision is
paramount. The objective when developing a simulation is to facilitate a deeper
comprehension of the systems characteristics and thus, be able to predict any phys-
ical behaviours that may occur during operation. Extensive efforts have been de-
voted to the development of accurate numerical algorithms, in order to ensure that
the generated predictions are reliable, and contain minimal numerical errors. It is
only upon rigorous numerical analysis that a system is deemed suitable. Of course,
in practice there are many factors that may arise, which could not have been ac-
counted for previously. This can be due to measurement errors, or a lack of knowl-
edge regarding the operating conditions - perhaps measurements are infrequent,
or even unattainable. Therefore, it becomes obvious that appropriate treatment of
these uncertainties must be integrated within the computational process, so that it
becomes possible to fully understand the impact of errors, or uncertainty in param-
eter values, initial and boundary conditions.

Consequently, the field of Uncertainty Quantification (UQ) has become promi-
nent in recent years, and as such, it has become conceivable to investigate the effect
of such errors in measurements. As a result, more accurate and reliable predictions
can be attained. Traditionally of primary interest to statisticians and risk modellers,
the field has now branched into a wide variety of contexts. In particular, those which
utilise complex systems, where mathematical models are a simplified, reduced or-
der representation of the system in question. Although many models have been suc-
cessful in revealing quantitative connections between predictions and observations,
their usage is sometimes constrained by physical intuition2. Uncertainty encom-
passes the variability of data, and is unavoidable as a consequence of inaccurate or
incomplete knowledge of the governing physics, lack of measurements, or indeed
an error within them. Thus, if a full comprehension of the simulated behaviour,
and later the real system, is to be achieved, this uncertainty must be incorporated
throughout the numerical analysis - not merely as an afterthought.
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Statistical risk analysis has long been the at the heart of the financial sector; for
example, catastrophe models developed by insurance firms. Evidently, this process
is hinged on the probabilistic nature of the event. Considering engineered systems
continue to grow in complexity of operation and application, it also becomes essen-
tial that these deterministic models account for discrepancies in knowledge regard-
ing their underlying physics or operational bounds. Introducing such an element of
variability ensures the system is designed in a manner that fully incorporates this,
and therefore helps build confidence in the system’s integrity. Application of UQ
techniques can be used for certification, prediction, model validation, parameter es-
timation, and inverse problems2. It can offer an invaluable insight into systematic
and stochastic measurement error, limitations of theoretical models, and to some
extent, human error.

1.1.2 Generalised Polynomial Chaos (gPC)

One of the most promising and widely used methods for UQ is Generalised Poly-
nomial Chaos (gPC). Based on the original theory of Norbert Wiener in 1938, re-
garding Hermite Homogenous Chaos3, it incorporates orthogonal polynomials to
express the random quantities. Through exploitation of their inherent characteris-
tics, the stochastic quantities are transformed into a set of augmented deterministic
equations. The PC expansion will converge in the L2 sense in the Hilbert space for
stochastic systems with a finite second moment4. This generalisation was devel-
oped by Ghanem and Spanos and applied to many practical problems5, as a frame-
work to overcome some of the prior convergence issues when used in application
to non-Gaussian problems. This is due to the fact that full convergence may only
be achieved if the appropriate orthogonal polynomials are selected, based on the
distributions of the random parameter6. This will be conveyed in more detail in
the following Chapter, however, for now it is just necessary to understand the gen-
eral procedure. The spectral representation in the random probability space demon-
strates fast (and complete) convergence when the solution depends smoothly on the
random parameters.

Upon selection of the appropriate polynomial basis, it is necessary to solve the
problem using one of two methods. The first is the Galerkin method, which essen-
tially minimises the error of the finite-order gPC expansion using projection princi-
ples. This results in a set of coupled deterministic equations that can then be solved
using a numerical solver, such as Euler or Runge-Kutta. The second method is
known as Stochastic Collocation, and this relies on repetitive calculations at each
node within the random space. This is a deterministic sampling method and is
based on the tensor products of nodes, through the use of Gauss quadrature4. A
very important question is therefore presented - which method is best? Whilst the
collocation principle offers relative ease of application, it is limited to low dimen-
sionality. Errors can be introduced as a result of the integration scheme and aliasing
effects. In comparison, Galerkin projection requires much fewer equations in order
to achieve polynomial exactness. However, implementation is not as straightfor-
ward, as the Galerkin system must be derived. This can be an overwhelming process
for complex, non-linear applications. For this reason, the Galerkin procedure is not
as widely adopted, but it is of course a personal choice. For the purpose of this work,
Galerkin is employed as it offers the most accurate solution for multi-dimensional
problems, and does so using a minimal number of equations; thus, computational
efficiency is ensured within some limits7.
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1.1.3 Applications of Stochastic Computation

Application of gPC theory to stochastic processes has become increasingly popular.
The work of Wiener was the inspiration for the PC theory to follow, and focused
on the decomposition of Gaussian stochastic processes; namely in regard to Brown-
ian motion. However, it was Ghamen and Spanos who brought the topic into focus
again. Their work within the field of Finite Element Analysis demonstrated the very
practical benefits of PC application, although it was confined to Hermite polynomi-
als of Gaussian random variables. This was later extended by Xiu and Karniadakis
in 2002, when the proposal of the Generalised Polynomial Chaos (gPC) facilitated
convergence for non-Gaussian problems8. This work detailed the selection process
for the orthogonal polynomials based on the probability distribution function (PDF)
of the random parameter. Xiu is now perhaps one of the most prominent researchers
within the field and has released a number of papers on the application of gPC. Most
recently, a textbook which has become a popular starting point for those who wish to
utilise these methods. It offers a broad overview of numerical methods and funda-
mental concepts to gPC and the spectral approach. The applications of his work have
largely been concerned with thermo-fluid behaviour8 9. Le Maıtre et al. extended the
application of these techniques to fluid flow for low Mach number10. Debusschere
et al. applied gPC to the context of electrochemical flow in micro-fluidic systems11.
Most notably, the key figures within gPC research demonstrated the pitfalls and the
challenges presented by its application12. Thus, highlighting the limitations of the
method, and important considerations that must be made by anyone wishing to ap-
ply gPC in the context of their work.

1.1.4 Research within Robust Control

Evidently there are many benefits posed by application of PC methods, however,
their application to controller design has only recently become apparent. Design of
control algorithms that achieve robust performance in the presence of parametric
uncertainty is certainly important. Development of gPC applications in the context
of robust control became an interesting topic, most notably due to Nagy and Braatz,
whom demonstrated the influence of parametric uncertainty upon non-linear sys-
tems in industrial applications such as batch crystallisation13. This served as a veri-
fication and validation technique, however, stability was not analysed. Application
of gPC for stability analysis was first demonstrated by Hover and Triantafyllou, in
which the stability of a simple bi-linear system was deduced from the gPC expan-
sions. Hover later used a gradient based method to parametrise optimal trajectories
using Legendre polynomials. This demonstrated that the method incurred low com-
putational cost14. Considering that previously, incorporation of uncertainty within
robust controllers was performed on a worst-case scenario basis. Consequently, the
performance could in some cases be sluggish due to this over-compensation. It is
for this reason that combination of robust control algorithms and stochastic con-
trol methods has become a very interesting development. By doing this, it becomes
possible to first understand how random uncertainties impact upon the state tra-
jectories of system in question. Secondly, it results in a less conservative controller
design, thus ensuring the most effective performance. The stability margin of the
controller is designed accounting for this parametric uncertainty, which results in a
probabilistic robust control framework. It is also important to note that this optimi-
sation process is also based on the distribution of parameters, and therefore the PDF
must be known.
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The techniques of gPC are valuable to the areas of non-linear filtering and param-
eter estimation, which rely on prediction of covariance. It has been demonstrated
that it boasts better estimations for non-linear systems than those offered by linear
propagation theory. In the work of Blanchard15, the uncertainties are propagated
and error covariances are estimated in the EKF framework. Parameter estimates are
then obtained in the form of a polynomial chaos expansion, which possesses infor-
mation about the a posteriori probability density function. Kewlani et al, presented
further work regarding uncertainties in parameter estimation in application to au-
tonomous vehicles16. The prediction of vehicle dynamics using gPC was proven to
be more effective than Monte Carlo methods.

Monte Carlo (MC) is a sampling-based technique which generates independent
realisations of the random parameters, which consequently become deterministic
problems and random realisations of solutions are then obtained. It is a very popular
method due its simplicity, and is usually the first method employed when analysing
such problems. Unfortunately, the pure repetition required in order to obtain deter-
ministic solutions places a very significant computational burden. The mean value
generally converges at a rate inverse to the number of samples. Furthermore, it is
not computationally scalable and can suffer statistical inconsistencies. MC is just
one of the methods currently used in uncertainty propagation: Markov Chain MC,
Bayesian Estimators and Unscented Kalman Filtering are some of the other methods
used in non-linear estimation. The majority of gPC results are validated using one
of these methods. High accuracy is demonstrated using gPC, with the added benefit
of reduction in computational cost.

1.1.5 Application to Optimal Trajectory Design

It has been shown that gPC theory is reliable and effective when solving control
problems with probabilistic uncertainty in system parameters. This work is specif-
ically focused on the topic of optimal trajectory design and the mapping of the
dynamic system to its higher order deterministic counterpart in consideration of
structured uncertainties. The optimal control problem is essentially to determine
the controls and states that optimise a performance cost, with respect to dynamic
constraints. These are in the form of ordinary differential equations (ODEs), bound-
ary conditions, and path constraints. The optimal cost, or Bolza problem, is solved
using one of two classes of methods; direct or indirect. Indirect methods are based
on Pontryagin’s Principle, which states that the optimal cost function should re-
sult in the instantaneous minimisation of the Hamiltonian. However, this is reliant
upon appropriate dual space variables17. This is achieved by formulation of the
multiple-point boundary value problem (MPBVP), which results in high levels of
accuracy. Unfortunately, it can be difficult to implement due to the need for ini-
tial costate guesses, which are not exactly intuitive. In consideration of this, direct
methods are favourable and still gaining popularity due to their convenience and
precision. They involve transcription of the Optimal Control Problem (OCP) into a
finite dimensional, non-linear programming problem (NLP). SPARTAN18;19;20;21;22;23

is a MATLAB tool developed at the German Aerospace Center (DLR), which utilises
Pseudospectral (PS) techniques in order to solve the OCP. It will be used in this
work to establish a framework for optimal trajectory calculation in consideration of
stochastic uncertainties. If stochastic information is incorporated into the design and
analysis phase, the trajectory can be amended accordingly in order to reduce strain
on controllers; very important for practical applications. This is where uncertainty
propagation again comes into focus, and in the same manner as the work detailed
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previously, a more robust margin is obtained. For applications such as planetary
landers and rovers, uncertainty is intrinsic. Whether it is manifested in the land-
ing location, or as a consequence of mismatch in atmospheric conditions, failure to
acknowledge this can be detrimental to the mission.

This work aims to build upon prior work carried out with regard to vehicle tra-
jectory optimisation. The first to demonstrate this application was Prabhakar et al in
2010, where they presented a novel framework for analysis of uncertainty in hyper-
sonic flight dynamics using gPC24. It concerned a Mars entry, descent and landing
(EDL) problem, comprising of structured uncertainties in both the initial conditions
and the state parameters. The evolution was then compared to MC results to ver-
ify the accuracy, and convey the computational efficiency of the method. Later that
year, Dutta and Bhattacharya expanded this work by means of Bayesian estimations
of the a priori probability density function of the random process, for the non-linear
problem25. In consideration of the fact that Kalman filters are only optimal for linear
systems, the Extended Kalman Filter must be applied to non-linear systems. In this
method, the covariance is propagated from the current mean using the linear dy-
namics. Although, improvements in accuracy can be accomplished if propagation
is performed using the non-linear dynamics. Thus, the density function is approxi-
mated and the posterior mean and covariance is determined to the third order. The
combination of Bayesian estimator and gPC framework performed very well for the
non-linear, hypersonic problem, in comparison to linear estimators. For instance, it
was shown that EKF performs poorly for non-Gaussian parameter uncertainty.

FIGURE 1.1: Mars Descent1

At this point it is important to specify the cost functionals that are presented
within the gPC stochastic framework. Specifically, the aim is to deduce trajectories
that result in minimum expectation and/or minimum variance. This was covered
by Fisher and Bhattacharya in 2011, where they demonstrated that these were equiv-
alent to the standard quadratic cost function26. Assuming the states are stochastic
and the control input is deterministic. These principles were conveyed by means
of the Van der Pol oscillator example, and results were compared to MC, as done
in previous work. Most recently, the Van der Pol oscillator problem was also cov-
ered by Xiong et al27. Additionally, the hypersensitive problem was solved for two
uncertainty sources. This particular problem is interesting, not only due to the multi-
dimensional nature, but also the combination of both uniform and Gaussian distri-
butions. Since a Polynomial Chaos Expansion (PCE) of n = 2 is deemed acceptable,
efficient computational performance is ensured. When compared to a system with
no stochastic elements incorporated, it becomes apparent that the resulting trajec-
tory is less sensitive to the specified uncertainty and thus, more robust. A gliding
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trajectory optimisation was also performed by Xiong, in addition to a comprehen-
sive comparison of Intrusive and Non-Intrusive methods for PC (these definitions
will later be formally defined)28.

The elegant transformation from stochastic to deterministic problem offered by
gPC methodology is evidently a very promising area of research. However, there
are imposed limitations, which should not be overlooked or understated. In light of
this, some of these crucial considerations are highlighted.

1.1.6 Numerical Challenges of gPC Methods

Previously, a distinction between Intrusive and Non-Intrusive PC methods was made.
In the Intrusive case, the expansions are substituted into the governing equations
and the evolution of uncertainty is obtained by Galerkin projection. This is con-
veyed by means of the spectral PCE coefficients. It is then transformed into the
deterministic framework, however, subsequent arithmetic results in a number of is-
sues. Most prominently, there are truncation errors in the Pseudospectral (PS) evalu-
ation of polynomial basis functions and also in application to non-polynomial func-
tions12. Additionally, it has been noted in the majority of the papers covered here,
that an issue is presented in deviation of the PDF of the random variable from that
of the associated PDF of the orthogonal polynomial. Not only does this degrade
performance, it many also destabilise the governing equations. In a bid to combat
this, high order PC representations must be used. As stated previously, usually a
second order approximation is satisfactory, however, in the presence of high dimen-
sionality i.e. many random variables, higher order approximations are necessary.
More specifically, strictly positive variables that have small mean values and large
uncertainties can pose severe challenges for the accuracy and stability of the PC rep-
resentation. When large non-linearities are present, application of high PC order
can be impractical, as the dimension of the problem grows very rapidly with order.
Truncation errors also become more prevalent in such scenarios. PS methods offer
a way in which to calculate high order problems in the most efficient and effective
manner.

In application to non-polynomial functions, evaluations of PC variables are dif-
ficult, as the Galerkin projection method cannot be applied directly to determine the
PC coefficients of the function result. Instead, another method used to overcome
this is the Taylor series approximations for these functions. This was demonstrated
by Debusschere et al12. Unfortunately, although straightforward and cost effective,
yet again high-order PC expansions result in poor accuracy. Additionally, for many
functions the limitation is set by the theoretical range of convergence of the Taylor
series. A more robust and accurate technique was devised, which evaluates non-
polynomial functions by integrating their derivatives. Furthermore, sampling-based
methods can be employed; namely the non intrusive spectral projection method,
which is capable of accurately evaluating functions of PC variables. Based on the de-
gree of polynomial exactness of these quadrature rules, M + 1 sample points in each
stochastic dimension are sufficient to correctly integrate the expectations, if there
is a well represented PC expansion of order M. Thus, accurate PC representations
of functions may be obtained, but while efficient for a low M, the implementation
results in dense tensor products in multiple dimensions. This then leads to an expo-
nential increase in the number of samples, which of course degrades performance.
It therefore becomes very apparent that these methods do not scale well with the
number of stochastic dimensions in the problem. This is often referred to as "the
curse of dimensionality" for dynamic programming.
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Another crucial consideration is the response evolution. It was noted in the ma-
jority of research based on trajectory optimisation, that the accuracy is compromised
the longer the integration time. Therefore, it can be stated that the gPC framework is
well suited for evaluating short term statistics of dynamical systems, but is lacking
in application to longer time periods. This occurs as a result of the finite dimen-
sional approximation of the probability space. Prabhakar et al noted that lower or-
der moments offer higher accuracy than higher order moments, for any given order
of PCE24.

In order to overcome these very significant limitations, computational and math-
ematical challenges have to be solved, and only following this will more general and
practical applications evolve. In consideration of this so called "curse of dimension-
ality", more advanced sampling techniques would enable the efficient and accurate
construction of a reduced basis space. A second requirement is to develop highly
non-linear problems that expose reduced order methods for computational reduc-
tion. For this, there are several techniques which have been recently developed,
such as: empirical interpolation and its discrete version. For example, best point
interpolation, Gappy POD, Gauss Newton with approximated tensor12. However,
these techniques do not necessarily guarantee the optimum formulation of the ap-
proximated problem. In particular its stability, which is necessary in order to enable
reliable computational reduction. Furthermore, in the construction of reduced basis
spaces, it is crucial to balance the errors arising from high-fidelity and reduced basis
approximation, and this leads to a total error of the computational approximation
of the underpinning parametric/stochastic problems. Depending on the problem,
it is possible to be confronted with quantities whose variations with respect to the
random parameters are not continuous. The gPC method experiences difficulties in
convergence for such discontinuous distributions in the stochastic space. Addition-
ally, it is important to note that the PDF cannot be determined explicitly in the gPC
framework, unless a Gaussian distribution is adopted29. Other challenges, such as
long-time integration behaviour, non-linear conservation laws and multi-scale and
multi-physics coupling are also important for the development of reduced order
methods; particularly for their application to uncertainty quantification problems12.

1.1.7 Future Developments

The application of gPC can at first appear daunting; evidently it can become highly
complex, and at an alarming rate. Additionally, the aforementioned issues can deter
people from employing such techniques. Despite this, it is encouraging to see that
there are a number of current research interests based on overcoming these chal-
lenges. Several methods have been proposed to reduce this divergence, including
adaptive and multi-element approximation techniques. Dimension-adaptive sparse
grid sampling, importance sampling, multi-level construction, are all in active devel-
opment for reduced order methods in high-dimensional uncertainty quantification
problems12.

There has also been a peak in interest regarding high order stochastic colloca-
tion. The fundamental work regarding this principle was done by Xiu and Hes-
thaven, whom demonstrated an effective framework for this high order method30.
The application of sparse grids for the purpose of multi-variate interpolation, re-
sults in high-order accuracy, with a reduced number of nodes in higher stochastic
dimensions. It cannot be emphasised enough, just how challenging integration and
interpolation become at this point. In an effort to reduce computational burden,
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adaptivity is being explored; adaptive selection of polynomial basis, or adaptive
sparse grid collocation.

Regarding the issue of discontinuous distributions in the stochastic space, it
has been proposed that increasing the maximum degree of the chosen basis (p-
refinement) helps. It must, however, be noted that despite some advantages, it can-
not always overcome those convergence difficulties. It also expands the size of the
system to solve, and hence makes the obtainment of the deterministic solution of the
stochastic problem more complex. For longer integration times, convergence can be
improved by a process referred to as time-dependent generalised polynomial chaos
(TDgPC). This involves the recalculation of the polynomial basis after a specified
time31.

The regularity or, in some cases, irregularity of the solution with respect to the
stochastic probability space has a significant effect on the convergence rate of gPC
expansion. The difficulty is presented by the fact that this is usually not known a pri-
ori, for the majority of problems. This can be addressed by division of the stochastic
space, in a method called "h-refinement". It facilitates use of a relatively low de-
gree of expansion on each element of the partition, and this results in a piecewise
polynomial approximation fitting. This is the basis of the multi-element generalised
polynomial chaos (MEgPC). Wan and Karniadakis were the first to propose this de-
composition of the random inputs into smaller elements. Consequently, in each el-
ement there is a new random variable that is produced, and then the standard gPC
method can be applied. The methodology of this decomposition is based on a mesh
adaptation scheme, which relies on the relative error in the variance prediction32. If
an element does not satisfy the error criterion, the element is divided into two parts
of equal dimensions. Further work has been proposed regarding the specified error
criterion31.

Finally, it is important to return to topic of optimal trajectory design specifically,
and detail the proposed future work of the relevant researchers. In24, they suggest
future work will encompass the adaptive/multi-element techniques, as described
previously in order to improve longer-term dynamics. Dutta and Prabhakar pro-
pose to generalise their Bayesian, gPC framework, in order to incorporate maximum
likelihood and minimum error of the states and state estimates24. Finally, Xiong de-
tails the parallel computing technique for the transcription of the NLP as an area of
interest. Additionally, more complex systems will be tackled27.

The aim is ultimately, that through this fairly comprehensive review, the field of
stochastic computations, and more specifically application of gPC theory becomes
more transparent. The benefits of its application are evident and although some chal-
lenges are presented (particularly in the case of high dimensionality), the results are
promising. By highlighting relevant research in the area of trajectory optimisation, it
is hoped that this acts as a suitable benchmark for this work, and a solid foundation
for extension of the methodology to a number of relevant problems. Successful ap-
plication of gPC theory, along with the impressive ability of SPARTAN, will enable
trajectory optimisation in the presence of structured uncertainty by development of
a framework that solves for minimum covariance cost functionals. Most crucially,
this will meet a key requirement in the design of future space missions.
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Chapter 2

Mathematical Preliminaries

2.1 Definition of Problem Space

Some fundamental mathematical principles are discussed within this chapter in or-
der to provide a foundation for the development of Polynomial Chaos methods.

2.1.1 Inner and Outer Products

The inner product is a more general form of the dot product that offers a way of
multiplying vectors together within the defined vector space, resulting in a scalar.
In a real vector space, the inner product is denoted by 〈·, ·〉, where (·) corresponds to
the appropriate variables33.

Essentially, it is equivalent to the dot product between functions f(x), g(x), but in
infinite dimensions and with different weightings. Orthogonality of the polynomials
is intrinsically linked to the inner product, and thus it is a very important operation
which will be detailed fully as follows.

The Lp space is also an important concept. The set of Lp functions must be p-
integrable for f to be in Lp (i.e. f(x1, x2, ..., xp)).

‖f‖P =

(∫
x
‖f‖pdx

)1/p

(2.1)

where x is the measure space.
The inner product space can also be referred to using (L2, 〈·, ·〉2) and subse-

quently abbreviated by L2. This is the set of square integrable functions in the Lp
space (in which p = 2). Therefore, it can be seen that Lp is a generalisation of L2.

The L2 norm, or the Euclidean norm as it is also known, is very simply the dis-
tance from the origin to point x, using Pythagorean theory.

The outer product is another important operation. It is the tensor product, which
becomes particularly useful when building the polynomial bases:

f ⊗ g = f(x)g(x)T (2.2)

The Kronecker product is a generalisation of the tensor product, and is also denoted
by the symbol ⊗. For example, if A is an [m × n] matrix, and B is [p × q], then the
Kronecker product is a matrix of dimension [(mp)× (nq)], defined as:

A⊗B =

a11B . . . a1nB
...

. . .
...

am1B . . . amnB

 (2.3)
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2.1.2 Hilbert Space

In order to define a Hilbert Space, it is necessary to start with some more basic def-
initions. First of all, a metric space, S, is a set in which the distance between two
points, x and y, is a non-negative real number34. A distance function, d, in a metric
space must satisfy the following conditions:

d(x, y) = 0 if x = y

d(x, y) = d(y, x)

d(x, y) + d(y, z) ≥ d(x, z) triangle inequality
(2.4)

If the metric, or distance, d, satisfies the following limit, it is a Cauchy sequence,
defined as:

lim
min(m,n)→∞

d(xm, yn) = 0 (2.5)

A complete metric space therefore results in every Cauchy sequence being conver-
gent35. A Hilbert space, H, is a vector space with an inner product 〈f, g〉 such that
the norm, ‖f‖

‖f‖ =
√
〈f, f〉 (2.6)

results in this complete metric space. TheL2 is an example of an infinite-dimensional
Hilbert space,H, and in this case the inner product is given by34

〈f, g〉 =

∫ ∞
−∞

w(x)f(x)g(x)dx (2.7)

For Lp in which p 6= 2, the space is a Banach space, not a Hilbert space36.

2.2 Orthogonal Polynomials

This section covers the main characteristics of orthogonal polynomials, and the classes
that are particularly useful for this application.

2.2.1 Principle of Orthogonality

Orthogonal polynomials are a class, ψn, defined over the interval [a, b] that obey the
relation of orthogonality, which is defined as such37:∫ b

a
w(x)ψm(x)ψn(x)dx = δmnγn m,n ∈ N (2.8)

where w(x) is a weighting function (w(x) > 0) and δmn is the Kronecker delta, de-
fined as:

δmn =

{
1, m = n

0, m 6= n
(2.9)

The normalisation factor is denoted by γn and is the weighted inner product of the
polynomials:

γn =

∫ b

a
w(x)[ψn(x)]2dx (2.10)
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If γn = 1 the polynomials are orthonormal and orthogonal, since an inner product of
zero dictates the principle of orthogonality. Orthogonality is implied by the property
of orthonormality, however, the opposite is not always the case; two vectors are
orthonormal if they are orthogonal, and each vector has a norm of 137.

〈u, v〉 = 0 however 〈u, u〉 = 〈v, v〉 = 1 (2.11)

The polynomials, ψn and ψm are defined in the standard manner38.

ψn(x) = anx
n + an−1x

n−1 + ...+ a1x+ a0 (2.12)

The monic version of ψn(x) involves division by the leading coefficient, an. Orthog-
onality is a very useful property, which can help towards gaining the solution to a
variety of mathematical and physical problems.

ψn(x) = xn + ãix
n−1 + ...+ ã1x+ ã0 (2.13)

where,
ãi =

ai
an
, i ∈ [0, ..., n− 1] (2.14)

There are various classes of polynomials which pose their own benefits of applica-
tion. The most relevant to this work will now be discussed.

2.2.2 Three term Recurrence Relation for Orthogonal Polynomials

All sequences of orthogonal polynomials satisfy a three term recurrence relation
given by39:

ψn+1(x) = (Anx+Bnx)ψn(x) + Cnψn−1(x) n ∈ [1, ...,∞] (2.15)

where

An =
an+1

an
n ∈ [0, ...,∞] and Cn = − An

An−1 · γn
γn−1

n ∈ [1, ...,∞] (2.16)

Therefore, the sequence for a set of monic polynomials, i.e. for an = 1 is as follows:

ψn+1(x) = xψn(x) +Bnψn(x) + Cnψn−1(x) with Cn = − γn
γn−1

(2.17)

This relationship provides a very powerful tool for generating the necessary poly-
nomials, which will now be demonstrated.

2.2.3 Hermite Polynomials

Hermite polynomials, Hn(x), are a set of orthogonal polynomials over an infinite
domain (−∞,∞). The weighting function is given by e−x

2/2 for the Probabilists’
class, whilst the Physicists’ has a weighting of e−x

2
.∫ ∞

−∞
Hm(x)Hn(x)e

−x2
2 dx = δm,nn!

√
2π (2.18)

The weight associated with this polynomial corresponds to a Gaussian distribution.
The normalisation factor or inner product, denoted by 〈Hn, Hn〉, is given by n!.
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As mentioned, there are two classes of Hermite polynomials; the Probabilists’ is
used here as the leading coefficient is 1, as opposed to 2n for the former. The first
few polynomials are as such:

H0(x) = 1

H1(x) = x

H2(x) = x2 − 1

H3(x) = x3 − 3x

...

(2.19)

They satisfy the recurrence relationship of the form:

Hn+1(x) = xHn(x)−Hn−1(x) (2.20)

Using this relationship (Eq. (2.20)), the polynomials can be generated up to any
order n and Fig. 2.1 depicts the Hermite polynomials up to n = 3.
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FIGURE 2.1: Probabilists’ Hermite polynomials.

2.2.4 Legendre Polynomials

The second important class of polynomials are Legendre polynomials. These are
related to a uniform distribution based on their weighting and are orthogonal with
respect to the L2 norm on the interval [−1 ≤ x ≤ 1].∫ 1

−1
ψm(x)ψn(x)dx =

1

2n+ 1
δm,n (2.21)

Where δm,n is the Kronecker delta, as previously defined, and the preceding term
is the normalisation, or inner product. The first few Legendre Polynomials are as
follows:
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L0(x) = 1

L1(x) = x

L2(x) =
1

2
(3x2 − 1)

L3(x) =
1

2
(5x3 − 3x)

...

(2.22)

They can be generated by means of Bonnet’s recursion formula, and as before the
polynomials of up to n = 3 are shown by Fig. 2.2:

(n+ 1)Ln+1(x) = (2n+ 1)xLn(x)− nLn−1(x) (2.23)
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FIGURE 2.2: Legendre polynomials.

2.3 Gaussian Quadrature

In order to make quick, yet precise integral calculations quadrature techniques are
utilised. This involves estimation of the function, f(x), by a weighted sum for which
the best approximation is achieved by selecting appropriate abscissas, xi. This is the
case when the roots of the orthogonal polynomial, and the corresponding weighting
function are used within the same interval. This domain of integration is [−1, 1],
and thus, the function must be well approximated by the polynomials within this
range (i.e. not suited to those containing singularities). An n point Legendre-Gauss
quadrature rule will be exact for all polynomials up to a degree of 2n− 1.∫ 1

−1
f(x)dx =

n∑
i=1

wif(xi) (2.24)

Since the abscissas, xi, and the weights, wi, are dependent on the specific polyno-
mial, the following sections will detail how these are in fact obtained.
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2.3.1 Hermite Quadrature

It is important to stress that the Probabilists’ Hermite polynomials are used in this
application, hence the calculated roots and weights must correspond to this. The first
step in determining these quantities involves building the tri-diagonal Companion
Matrix (CM), C, of the monic polynomial, ψ(x), as given by Eq. (2.13).

C(a) =


0 1 0 . . . 0
...

. . . . . . . . .
...

...
. . . . . .

...
0 . . . . . . 0 1
−an . . . . . . . . . −an−1

 ∈ Rn×n (2.25)

The CM can in fact be used to compute the zeroes of an n degree polynomial, as a
consequence of this property:

ψ(x) = det[xIn − C(a)] (2.26)

It is therefore demonstrated by Eq. (2.26) that the roots of a given monic polynomial
are equivalent to the eigenvalues, D, of the CM. Furthermore, if ψ(x) has distinct
roots, the CM is diagonalisable. The eigenvectors, V, are then calculated such that:
C × V = V × D. This technique is known as the Jacobi method and is capable of
finding the spectral decomposition of a symmetric matrix40. The weights, wi, are
simply the first column of the eigenvector matrix, V , squared.

The zeros and weights for Gaussian quadrature relating to the Probabilists’ Her-
mite polynomials are given in Tab. 2.1 and Fig. 2.3 depicts the case of n = 3. Note
that since this information is not as readily available as that for the physicists’41;42,
the results can be verified by comparing with the moments of a standard Gaussian
variable43.

TABLE 2.1: Hermite quadrature abscissas and weights up to n = 5

n xi wi

2 ± 1 0.5

3 ± 1.7321 0.1667
0 0.6667

4 ± 2.3344 0.0459
± 0.7420 0.4541

5 ± 2.8570 0.0113
± 1.3556 0.2221

0 0.5333

By ensuring full compatibility of the quadrature rule and the polynomials used, high
precision can be achieved with very few nodes. For instance, with as little as 3 nodes,
integrations are correct for a simple linear expression. Of course, as dimensionality
increases, so does the number of nodes required to capture the behaviour.
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FIGURE 2.3: Roots of third order for probabilists’ Hermite polyno-
mial.

2.3.2 Legendre Quadrature

In order to calculate the roots of the Legendre polynomials, an initial guess is used;
based on the roots of the Chebyshev polynomial’s roots, which are given by:

x = cos

(
(2k + 1)π

2n

)
(2.27)

where k is the number of roots of the n degree polynomial. An iterative process is
then performed using the Legendre recursion relationship until the zeroes are deter-
mined. The zeroes form the Legendre polynomial, L(xi), which has the derivative,
D(xi). The corresponding weights, wi are found as follows:

wi =
2

(1− xi2)D(xi)2
(2.28)

The abscissas and weights are tabulated for up to n = 5 (Tab. 2.2), and the validity
of the solution for n = 3 is demonstrated by Fig. 2.4.

TABLE 2.2: Legendre quadrature abscissas and weights up to n = 5

n xi wi

2 ± 0.5774 1

3 ± 0.7746 0.5556
0 0.8889

4 ± 0.8611 0.3479
± 0.3400 0.6521

5 ± 0.9062 0.2369
± 0.5385 0.4786

0 0.5689
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FIGURE 2.4: Roots of third order for Legendre polynomial.

2.4 Probability Theory

The likelihood of occurrence of an event is dictated by the concept of probability. The
classic example is a coin flip; it is expected that the odds are 1 : 1 for each face (50%
likelihood of occurrence for each), if enough observations are made. Application
of probability theory therefore provides a method for theoretical justification. The
probability space is defined as a triplet (Ω,F , P ). The sample space is given by
Ω, and this is the set of possible outcomes. For instance, using the coin analogy,
the combinations of heads (H) and tails (T). The sample set is thus: HH, HT, TH
and TT. The variation, σ, must ensure the collection of all events in the field, F .
The measurable space is therefore (Ω,F) and provides a means for determining the
probability, P.

2.4.1 Gaussian Distribution

The Gaussian, or Normal distribution, is continuous and is defined as N (µ, σ2),
where the mean, µ ∈ R and the variance, σ2 ∈ R. The probability density func-
tion (PDF) is given by:

f(x) =
1

2πσ2
e−

(x−µ)2

2σ2 x ∈ R (2.29)

The classic Normal distribution is defined with a mean, µ = 0, and a standard devi-
ation, σ = 1. This distribution (Figure 2.5) is compatible with the Hermite polyno-
mials, as stated previously, due to their weighting. This means full convergence of
the solution may be achieved.
A stochastic variable, Z, with mean, µ and standard deviation, σ, is therefore a func-
tion of the normally distributed variable X according to:

Z = µ+ σX (2.30)

where X has mean, µ = 0, and standard deviation, σ = 1.
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FIGURE 2.5: Gaussian distribution.

2.4.2 Uniform Distribution

The Uniform distribution is defined on the interval U [a, b] and is given by the fol-
lowing density function:

f(x) =

{
1
b−a x ∈ [a, b]

0 otherwise
(2.31)

Therefore, it can be seen that the distribution is a constant with respect to x. In order
to be compatible with Legendre Polynomials, the distribution is f(x) = 1

2 . This is
due to the fact that the polynomials are defined in the interval [−1, 1].

The mean, µ, and standard deviation, σ, can be defined using the specified upper
and lower boundaries (b and a, respectively).

µ =
1

2
(b+ a) (2.32)

σ =
1

12
(b− a)2 (2.33)

The probability distribution for the interval [-1,1], which corresponds to Legendre
polynomials is depicted in Fig. 2.6:

In this case, the stochastic variable, Z, can be computed as:

Z = a+ (b− a)X (2.34)

where X is a uniformly distributed variable defined in [0, 1] with mean, µ and stan-
dard deviation, σ.
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2.4.3 Multi-dimensional Distributions

The distributions given previously correspond to a single random variable, however,
for multivariate stochastic problems, the probability distribution function (PDF) must
be amended appropriately. If the random variables are considered independent, that
is to say that the occurrence of one does not impact that of the others, then the PDF
is very simply the product of the univariate distributions.

f(x) = f1(x)f2(x)...fn(x) (2.35)

This means that the joint distribution is the product of the marginal density func-
tions, which in this case is the same as the conditional distribution for each variable.

0
20

0.005

10 20

0.01

P
(x

,y
)

10

0.015

y

0

x

0.02

0
-10 -10

-20 -20

FIGURE 2.7: Joint normal PDF.



2.4. Probability Theory 19

P
(x

,y
)

-1

-0.5

0

0.5

1

1.5

x-1
-0.5

0
0.5

1

y -1

-0.5

0

0.5

1

FIGURE 2.8: Joint uniform PDF.

0
20

1

10 1

2

P
(x

,y
)

10-3

0.5

3

y

0

x

4

0
-10 -0.5

-20 -1

FIGURE 2.9: Joint mixed PDF.

2.4.4 Expectation and Moments

It is important to now define some key statistics within stochastic analysis. First of
all, the mean value, also known as the expectation, is defined as:

µX = E[X] =

∫ ∞
−∞

xf(x)dx (2.36)

where X is the random variable and the distribution is given by f(x). In probability
terms, it is deemed the most likely value to occur i.e. the peak of the PDF (see Fig.
2.5).

The variance, σ2, is then a measure of the deviation from this mean, or most likely
value, and is given by:

σ2X = E[X] =

∫ ∞
−∞

(x− µX)2f(x)dx (2.37)
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The standard deviation, σX , is the square root of the variance and describes the
spread of the variable around its mean, µX . In this way, it is usual that centred
moments are considered, where the expectation is the centre and hence, the most
likely value of the variable, X. These are given by E[X − µX ]m, where the mth

moment of X is given by:

E[Xm] =

∫ ∞
−∞

xmf(x)dx m ∈ N (2.38)

σ2X = E[X2]− µ2X (2.39)

Simply, the first moment is the mean, µX , the second moment is the variance, σ2X ,
and the third is the skewness, γ. Higher moments become less intuitive, however,
they are very rarely needed for this type of statistical analysis.

Having given an overview of some basic mathematical principles, it is now nec-
essary to detail the formulation of the Polynomial Chaos Expansion (PCE) and ex-
actly how these definitions are employed.
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Chapter 3

Generalised Polynomial Chaos

3.1 Proposed Method for Stochastic Trajectory Optimisation

In this section the proposed stochastic trajectory optimisation method is described.
First, the concept of polynomial chaos for uncertainty propagation is briefly sum-
marised. Secondly, the Galerkin projection method to obtain the augmented system
of differential equation is detailed. This projection leads to the proper definition of
the underlying Augmented Optimal Control Problem (AOCP), which is ultimately
solved with SPARTAN.

3.1.1 Uncertainty Propagation

In general terms, a dynamic system may be represented by means of Ordinary Dif-
ferential Equations (ODEs) which can then be solved by a suitable numerical inte-
gration scheme (Runge Kutta, for instance). Let us consider a simple linear case,

Deterministic dynamics

{
ẋ(t) = ax(t)

x(t0) = x0 t ∈ [t0, tf ]
(3.1)

where x ∈ R is the state, and a ∈ R represents the system parameter. The initial
state is denoted by x0 and consequently integrated over the time span [t0 tf ]. In the
deterministic case (i.e., no uncertainties affect either x or a), this governing equation
leads to a deterministic solution; however, in the presence of uncertainties Eq. (3.1)
becomes a stochastic differential equation, which has a stochastic solution x(t). A
way to deal with stochastic systems is represented by the application of Polynomial
Chaos Expansion (PCE). If we consider that stochastic quantities arise from both
the parameters, a, and the initial conditions, x0, then both the state x(t) and the
parameter a can be represented by the corresponding PCE models:

PCE models


x(t) =

∞∑
j=0

xj(t)ψj(ξ)

a(t) =

∞∑
i=0

aiψi(ξ)

(3.2)

The stochastic variables are represented by given by ξ = [ξ0, ..., ξd], where d is the
number of uncertainties in the system. This infinite-dimensional expansion can be
truncated at a suitable order, P , according to the work of Cameron and Martin, who
stated full convergence in the L2 sense may be achieved upon appropriate orthog-
onal polynomial selection44. This truncation is performed in consideration of both
numerical accuracy and computational cost. The correct choice is dependent on
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TABLE 3.1: Orthogonal polynomial selection based on PDF of
stochastic quantity

Distribution Corresponding Polynomial Interval Weighting

Gaussian Hermite (−∞,∞) e−x
2/2

Uniform Legendre [−1, 1] 1
2

the weighting of the polynomial being compatible with the Probability Distribution
Function (PDF), as highlighted in Table 3.1.

Consequently, the PCE models given by Eq. (3.2) are reduced to the P th order
approximation, and then substituted into the original ODE (Eq. (3.1)). Hence the
stochastic linear system is

P∑
k=0

ẋk(t)ψk(ξ) =

P∑
i=0

P∑
j=0

ai(t)xj(t)ψi(ξ)ψj(ξ) (3.3)

which represents a set of P+1 coupled differential equations. The extension to larger
dimensions is obtained by applying the expansion to each of the terms involved in
the original set of differential equations, and leads to the overall dimension of the
problem, which is deduced using the following relationship,

P + 1 =
(n+ d)!

n!d!
(3.4)

where n is the highest order of polynomial used within the expansion, and the num-
ber of independent random variables is given by d. Further details on the multivari-
ate expansion can be found in Appendix B. Therefore, P + 1 determines the number
of PCE coefficients resulting from the expansion, which are used in order to trans-
form the stochastic model into the corresponding deterministic augmented system.
Unfortunately, the dimension of the problem will grow very rapidly with increasing
n and/or d, thus creating significant computational burden. However, the curse of
dimensionality is mitigated by

1. Choosing the set of basis functions corresponding to the uncertainty (for in-
stance, for normally distributed variables an expansion of n = 2 is perfectly
sufficient4).

2. Apply efficient multivariate integration techniques, based for instance on pseu-
dospectral hyperquadrature rules.

3.1.2 Galerkin Projection

The next step is to perform the Galerkin projection, which will result in a set of P +1
deterministic equations. This coupled system is given by the following relationship,
where < · > represents the inner product.

ẋk =
1

< ψ2
k(ξ) >

<

P∑
j=0

xj(t)ψj(ξ),

P∑
i=0

ai(t)ψi(ξ), ψk(ξ) > k ∈ [0, ..., P ] (3.5)
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The inner product of the orthogonal polynomials is the integral of the product of
univariate or multivariate polynomial bases, ψk(ξ), and the probability distribution,
F (ξ).

< ψi(ξ), ψj(ξ) > =

∫ b

a
ψi(ξ)ψj(ξ)F (ξ)dξ (3.6)

where the limits a and b are the integral bounds for the respective distribution (see
Table 3.1). Note that in the multivariate case, the PDF is then simply the product of
the marginal distributions for each random variable, if they are mutually indepen-
dent. Thus, even in the case of mixed distribution problems, the system characteris-
tics can be captured well.

The initial PCE coefficients are given by ai, which consist of the mean, µ and
standard deviation, σ of the parameter, a. For one dimensional problems, these
properties of the random parameter are placed in the first and second entries re-
spectively, of the matrix of dimension [1 × P ] (i.e. ai = [µa, σa, 0, ..., 0]). However,
in the multi-dimensional case it is slightly different (which will be described fully as
follows). If we now denote the integral of the triple product given by Eq. (3.6), as
eijk, and the normalization factor (as it is also known), as γk, then the augmented
system can be written in such a manner:

ẋk =
1

γk

P∑
i=0

P∑
j=0

aixjeijk (3.7)

where,
eijk = E[ψi(ξ)ψj(ξ)ψk(ξ)] (3.8)

and
k ∈ [0, 1, ..., P ], γk = < ψk(ξ), ψk(ξ) > (3.9)

Note that for the one dimensional case, there exists an analytical solution37 for
the integral of the triple product, eijk, and the normalization factor, γk, for Hermite
and Legendre polynomials, i.e., Gaussian and Uniformly distributed random quan-
tities, ξ. Specifically, we have:

Hermite polynomials:

eijk =

{
i!j!k!

(s−i)!(s−j)!(s−k)! , γk = k! if Eq. (3.12) holds

0 otherwise
(3.10)

Legendre polynomials:

eijk =


(

(−1)s
√

(2s−2i)!(2s−2j)!(2s−2k)!
(2s+1)!

s!
((s−i)!(s−j)!(s−k)!

)2
, γk = 1

2k+1 if Eq. (3.12)

0 otherwise
(3.11)

The orthogonality conditions are given by:

s ≥ i, j, k and 2s = i+ j + k is even (3.12)

The solutions can of course also be obtained using the quadrature methods. If only
one uncertainty is introduced, then the order of these polynomials is simply given
by the indices i, j and k. However, in the multivariate case, the polynomial bases
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are built using a Graded Lexicographic indexing method4 45. This indexing method
involves generating an array of indices of dimension [(P + 1) × d] and essentially
involves generating every combination of integers whose sum equals the order of
polynomial expansion, n. For example, consider a problem with 2 uncertain quan-
tities (d = 2), and with a third order PCE (n = 3). Using this method, the polyno-
mial bases are built as follows, where the subscript following ψ denotes the order
of polynomial and the subscript following ξ corresponds to the appropriate random
variable (Table 3.2).
The integral of the triple product, eijk, for the multivariate case is therefore found
using cubature techniques (i.e., quadrature for higher dimensions).

TABLE 3.2: Multi-Index Method for n = 3, d = 2.

|i| α Single index k Polynomial basis
0 0 0 1 ψ0(ξ1) ψ0(ξ2)

1 1 0 2 ψ1(ξ1) ψ0(ξ2)
0 1 3 ψ0(ξ1) ψ1(ξ2)

2 2 0 4 ψ2(ξ1) ψ0(ξ2)
1 1 5 ψ1(ξ1) ψ1(ξ2)
0 2 6 ψ0(ξ1) ψ2(ξ2)

3 3 0 7 ψ3(ξ1) ψ0(ξ2)
2 1 8 ψ2(ξ1) ψ1(ξ2)
1 2 9 ψ1(ξ1) ψ2(ξ2)
0 3 10 ψ0(ξ1) ψ3(ξ2)

Now the integral, eijk, is also generated using the relation given by Eq. (3.8),
however, the single integer is now of dimension d, corresponding to the number of
independent stochastic variables. The polynomial bases function to be evaluated
in the tensor product of the product of univariate polynomials in each dimension.
For example, if we consider a two-dimensional problem, then the polynomial basis
function is generated as such:

Ψ1 = ψi(ξ1)ψj(ξ1)ψk(ξ1)w Ψ2 = ψi(ξ2)ψj(ξ2)ψk(ξ2)w i, j, k ∈ [0, ..., P − 1]
(3.13)

where, w, is the weight associated with the respective uncertainty. The Kronecker
tensor product is then taken and the resultant basis function, Ψ, is integrated using
cubature techniques.

Ψ = Ψ1 ⊗Ψ2 (3.14)

The integers i, j, k are the original single indices but now they dictate which row of
the multi-index is used. Within this row, the first column corresponds to the first
uncertainty. Note that if there is initial condition uncertainty on any of the states, it will
be placed first within the multi-index. A generalised representation this PCE can be
viewed in Appendix A. For clarity, the first few terms of the expansion are depicted
by Fig. 3.1. Here you can see that i increments in this nested loop structure.

When building the polynomial basis for the PCE, it is important to make two
clear distinctions - the case of non-linearity in the dynamics and non-linearity arising
from the uncertainties. This is especially important when you begin to consider
MIMO systems. As the state, x, increases in dimension, the number of univariate
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FIGURE 3.1: Hermite polynomial bases for 2d uncertainty: (a) i = 0
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k = 0

polynomials, ψ, in each basis function, Ψ, increases. However, as the number of
uncertainties within the system as a whole increases, the number of bases increase
too i.e. it is the Kronecker product of d bases. This will be made more obvious in the
numerical examples covered in Ch. 5.

The multi-index, α, is also intrinsically linked to the initial PCE coefficients, ai,
and dictates the positioning of the distribution parameters (µa and σa). Taking
the example given for n = 3, d = 2, the initial PCE coefficients are thus given by
ai = [µa, 0, σa, 0, ..., 0]. The corresponding polynomial bases will define a tensor
product (also called Kronecker product, denoted by ⊗) given in the fourth column
of Table 3.2. The normalization factor, γk, will be defined accordingly as the product
of the univariate γk:

Hermite polynomials:

γk =

d∏
i=0

αi! (3.15)

Legendre polynomials:

γk =
d∏
i=0

1

2αi + 1
(3.16)
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Remark 3 Two classes of Hermite polynomials exist: physicists’ and probabilists’. Here the latter is
used. In the case of Legendre polynomials, there are also two variations: normal and shifted. They
each have different normalization factors and thus, care must be taken to ensure full compatibility

In the case of mixed distributions, the normalization is simply the product of the
respective normalization factors, γk. By solving these integrals it is possible to com-
pute an augmented matrix, A, that is used in the system of equations. For example,
let us consider the linear case as before, but now with a control input, u subject to
the parameter, b (i.e., a continuous-time linear system):

LTI system

{
ẋ(t) = ax(t) + bu(t)

x(0) = x0
(3.17)

We then assume that there is uncertainty in the variable x (i.e., resulting from pa-
rameter, a, and/or initial condition, x0), whilst the control, u is deterministic (b is
constant). The stochastic system representing Eq. (3.17) is given by the augmented
linear system

ẋ(t) = Ax(t) +Bu(t) (3.18)

where the transformation matrix A will be of dimension [(P + 1) × (P + 1)] and is
computed such that

Ajk =
1

γk

P∑
i=0

P∑
j=0

aieijk k ∈ [0, ..., P ] (3.19)

Since we assumed a deterministic control parameter, the corresponding transforma-
tion matrix is simply B = [1, 0, ..., 0]T and is also of length P + 1.

The system of Eq. (3.19) can be propagated in order to obtain the PCE coefficients
(as now given by each of the components of x). The initial values of x are defined
by x0, which correspond to the first PCE coefficients of the initial condition. For
instance, if there is uncertainty in the initial conditions, then x0 = [µx, σx, 0, ..., 0]. If
uncertainty is only in the parameter, a, then x0 will only consist of µx as a non-zero
term. Now the generation of the multivariate PCE has been discussed, it is now
necessary to detail how this is used to the transform the OCP in order to account for
the system uncertainties.
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Definition of Stochastic Optimal
Control Problem

4.1 Augmented Optimal Control Problem

In order to obtain the optimal control, u∗, for a stochastic system, the cost function
must be modified in order to account for the uncertainties in the system. This is
achieved by using the derived deterministic dynamics resulting from the PCE and
subsequent Galerkin projection. Consequently, the augmented system will be de-
scribed by the P + 1 states, obtained by the PCE expansion. Since we are dealing
with stochastic systems, we do not minimise deterministic variables, but stochastic
quantities, such as the mean, and the standard deviation. This information needs
to be properly incorporated into the cost function as well. In the frame of PCE, the
mean and the standard deviation are defined as

µ = x0(t)

σ =

√√√√ P∑
i=1

γixi2(t)
(4.1)

By this definition, the mean always corresponds to the first PCE coefficient, x0,
whilst the standard deviation is the sum of the product of normalisation factor and
corresponding PCE coefficient (neglecting the mean, x0).

We can therefore define the AOCP as follows:

AOCP︸ ︷︷ ︸
determine u∗

=



min J = Φ[µ(x), σ(x)] +

∫ tf

t0

Ψ[µ(x), σ(x)]dt

s.t. ẋk =
1

< ψ2
k(ξ) >

<

P∑
i=0

P∑
j=0

ai(t)xj(t)ψi(ξ)ψj(ξ), ψk(ξ) >

x0(t0) = x0(t0), ..., xp(t0)

xf (tf ) = x0(tf ), ..., xp(tf ), k ∈ [0, ..., P ].

The cost is comprised of the Mayer and Lagrange terms, as previously defined,
hence the first term imposes final state conditions, whilst the former regulates the
entire response. The specific stochastic cost formulation depends on both the origi-
nal cost and the desired restrictions on mean and/or variance.

For instance, if we wish to minimise the expectation of the square of the final state,
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then this can be written in terms of the PCE in the following manner26:

E[x2] =

P∑
i=0

P∑
j=0

xixj

∫
ψi(ξ)ψj(ξ)dξ = X(t)TWX(t) (4.2)

W = diag[< ψ0(ξ), ψ0(ξ) >, ..., < ψk(ξ), ψk(ξ) >] (4.3)

where W denotes the weights corresponding to the inner products (which are also
given by γk) and X contains the PCE coefficients.

If we now consider minimum covariance trajectories, then the variance, σ2(x) can
also be written in terms of the PCE expansion as:

σ2(x) = E[x− E[x]]2 = E[x2]− E2[x] = X(t)TWX(t)− E2[x] (4.4)

where,

E[x] = X(t)TF and F = [1, 0, ..., 0]T

E2[x] = X(t)TFF TX(t)
(4.5)

This can therefore be further simplified:

σ2(x) = X(t)T (W − FF T )X(t) (4.6)

This formulation results in the attainment of optimal control solutions for mini-
mum expectation and/or covariance trajectories following the PCE and subsequent
Galerkin projection. The relations given by Eqs. (4.5) and (4.6) can enter the cost in
integral form or as a final condition.

The process of stochastic trajectory optimisation is now outlined, and now these
principles are demonstrated using two case problems in order to convey exactly
how the deterministic augmented system is obtained.

4.1.1 Overview of Stochastic Trajectory Optimisation Procedure

The proposed framework for stochastic trajectory optimisation can be summarised
by the following steps which are also depicted in Fig 4.1:

1. Model uncertainties within the system using PCE.

2. Transform stochastic system of equations into the augmented deterministic
equivalent.

3. Quantify the stochastic cost functional (dependent of whether minimum ex-
pectation and/or covariance trajectory).

4. Solve augmented system by NLP transcription (using SPARTAN, in this case)
in order to establish the optimal control.

5. Calculate the relevant statistics for the new optimised trajectory.
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FIGURE 4.1: Overview of stochastic trajectory optimisation using
multivariate polynomial chaos.
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Chapter 5

Numerical Examples

A number of examples are given in order to demonstrate the capability of Multi-
variate Polynomial Chaos in application to stochastic trajectory optimisation. First
of all, the one-dimensional case is given and this is subsequently extended to multi-
dimensional uncertainty. The results presented as follows were obtained for mini-
mum final expectation and variance of the stochastic trajectory.

5.1 Example Zero

This chapter details the example that was used during the development of the Poly-
nomial Chaos techniques. It does not involve any optimisation process, but is ben-
eficial to include for the purposes of demonstrating the validity of the method and
solution. This can be achieved as there exists a number of analytical solutions for the
uncertainties, which can be further verified using a very simple MC. Furthermore,
the example has been covered by others27 and thus, it is possible to directly compare
results to check that the augmented system is indeed correct.

The following system is a linear example subject to a parameter, a:

ẋ(t) = −ax(t)

x(0) = 1, t = [0, 1]s
(5.1)

If we first consider an uncertainty in the initial condition of x0∼N(1, 0.2) and a de-
terministic parameter, a, then the PC model is as given by Eq. (3.2). The initial PCE
coefficients for the parameter, a, will therefore be ai = [1, 0, 0], and those for the ini-
tial condition will be x0 = [1, 0.2, 0]T . Since there is no uncertainty in the parameter,
the augmented system obtained from Eq. (3.19) is simply:

ẋ =

ẋ0ẋ1
ẋ2

 = −

1 0 0
0 1 0
0 0 1

x, γ =

1
1
2

 (5.2)

The analytical expressions in this case for the mean, µ, and standard deviation, σ,
are given by:

µ = µx(e−at)

σ = µx(e−a0t)σx
(5.3)

Finally, a Monte Carlo (MC) analysis of 2000 runs is performed by simply perturbing
the initial condition by δx, where:

δx = µx + σxZ (5.4)
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where µx is the mean of the initial condition, σx, is the initial state standard deviation
and Z is a vector of normally distributed random numbers of dimension [n×1]. Here
n is the number of MC runs.

The augmented system of equations is propagated in order to determine the sys-
tem statistics as shown in Figs. 5.1(a) and 5.1(b). These statistics have been obtained
using the PCE coefficients and Eqs. (4.5) and (4.6) and are compared to the MC value
and the analytical one. All three solutions demonstrate full agreement.
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FIGURE 5.1: Statistics for 1d normal initial condition (a) mean, and
(b) std.

The coefficients resulting from propagation of the augmented system are given by
Fig. 5.12. There are only 3 since the number of random variables, d = 1, and the
order of expansion n = 2, according to Eq. (3.4).
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FIGURE 5.2: PCE coefficients for normal initial condition uncertainty.

Now moving on to parameter uncertainty of a∼N(0, 1), then the initial coefficients
are ai = [0, 1, 0] and x0 = [1, 0, 0]T . This is due to the fact that the mean, µ, is
assigned to the first coefficient, and for 1d uncertainty the second coefficient is σ.
The augmented system is given by:ẋ0ẋ1

ẋ2

 = −

0 1 0
1 0 2
0 1 0

x0x1
x2

 , γ =

1
1
2

 (5.5)
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The analytical solutions for mean, µ and standard deviation, σ, for 1d normal pa-
rameter uncertainty are as follows:

µ = e(
1
2
(σat)2−µat)

σ =
√
e2(σat)2−2µat − e(σat)2−2µat

(5.6)

A comparison between the analytical, MC and PC statistic solutions are presented
in Figs. 5.3(a) and 5.3(b). The PCE coefficients are shown depicted in Fig. 5.12.
Evidently, a second order approximation is not sufficient to capture the standard de-
viation for high uncertainties. Instead, a PCE of n = 4 can demonstrate the evolution
of the stochastic quantity perfectly. This particular example is covered in Ch. 6 for
reference.
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FIGURE 5.3: Statistics for 1d normal parameter (a) mean, and (b) std.
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FIGURE 5.4: PCE coefficients for 1d normal parameter.

For uniform parameter uncertainty a∼N(−1, 1), the initial PCE coefficients are ai =
[0, 1, 0]T and x0 = [1, 0, 0]T . The subsequent augmented system is given by:

ẋ =

ẋ0ẋ1
ẋ2

 = −

0 0.3333 0
1 0 0.4
0 0.6667 0

x0x1
x2

 , γ =

 1
0.3333

0.2

 (5.7)
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The analytical solutions are as follows, where the upper boundary is denoted by ub
and the lower by lb. The subscript a corresponds to the parameter:

µ = −e
−ubat − e−lbat

t(uba − lba)

σ =

√
−e
−2ubat − e−2lbat
2t(uba − lba)

− µ2
(5.8)

As before, the statistics are compared in Figs. 5.5(a) and 5.5(b), and it is apparent
that uniform distributions can be captured more precisely than normal distributions
when using lower polynomial orders. There are 3 coefficients shown in Fig. 5.12.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

Analytical MC PC

(a) Mean for 1d normal parameter.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Analytical MC PC

(b) Std for 1d normal parameter.

FIGURE 5.5: Statistics for 1d uniform parameter (a) mean, and (b) std.

Next, we start to consider the two-dimensional case where the is uncertainty in both
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FIGURE 5.6: PCE coefficients for 1d uniform parameter.

the parameter and initial condition. For example, if a∼N(0, 1), with initial condition
uncertainty of x0∼N(1, 0.2) and an expansion of n = 2, the initial PCE coefficients
are ai = [0, 0, 1, 0, 0, 0]T and x0 = [1, 0.2, 0, 0, 0, 0]T . It is important to pay attention to
the placement of the standard deviation term, which corresponds to the placement
of the first non-zero in the multi-index (n.b. initial conditions are always placed



5.1. Example Zero 35

first). The augmented system is then as such:

ẋ0
ẋ1
ẋ2
ẋ3
ẋ4
ẋ5

 = −



0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 0 0 2
0 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0





x0
x1
x2
x3
x4
x5

 , γ =



1
1
1
2
1
2

 (5.9)

The analytical solution for the 2d normal problem is:

µ = µxe
1
2
(σat)2−µat)

σ =

√
(σ2x + µ2x)e2σ2

at
2−2µat − µ2xeσ

2
at

2−2µat − µ2xeσ
2
at

2−2µat
(5.10)

The expectation comparison is given in Fig. 5.9(a), whilst the standard deviation is
depicted in Fig. 5.9(b). These statistics are derived from the 6 PCE coefficients which
are shown in Fig. 5.8.
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FIGURE 5.7: Statistics for 2d normal parameter and initial condition
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FIGURE 5.8: PCE coefficients for 2d normal parameter and initial con-
dition uncertainty.
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For 2d uniform distribution of a∼U(−1, 1), with initial condition uncertainty of x0∼U(0.4, 1.6)
the initial conditions are ai = [0, 0, 1, 0, 0, 0]T and x0 = [1, 0.6, 0, 0, 0, 0]T and the aug-
mented stochastic system is therefore.

ẋ0
ẋ1
ẋ2
ẋ3
ẋ4
ẋ5

 = −



0 0 0.3333 0 0 0
0 0 0 0 0.3333 0
1 0 0 0 0 0.4
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0.6667 0 0 0





x0
x1
x2
x3
x4
x5

 , γ =



1
0.3333
0.3333

0.2
0.1111

0.2

 (5.11)

The analytical expression for 2d uniform uncertainty in both the parameter and ini-
tial condition:

µ =
1

2
(ubx + lbx)− e−ubat − e−lbat

t(uba − lba)

σ =

√
−1

3
(u2bx + l2bx + lbxubx)

e−2ubat − e−2lbat
2t(uba − lba)− µ2

(5.12)

For the 2d case, 5000 MC runs were performed in order to establish to reach agree-
ment with the gPC solution and the analytical value. Again, uniform uncertainty is
well captured by using the PC framework, even for a small expansion of n = 2. The
statistics are shown by Figs. 5.9(a) and 5.9(b). The PC coefficients are depicted in
Fig. 5.10.
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FIGURE 5.9: Statistics for 2d uniform parameter and initial condition
(a) mean, and (b) std.

Finally, if we consider the mixed distribution case: a normal parameter uncertainty
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FIGURE 5.10: PCE coefficients for 2d uniform parameter and initial
condition uncertainty.

a∼N(0, 1), with initial condition uncertainty of x0∼U(0.4, 1.6), then the initial con-
ditions are ai = [0, 0, 1, 0, 0, 0]T and x0 = [1, 0.6, 0, 0, 0, 0]T .

ẋ0
ẋ1
ẋ2
ẋ3
ẋ4
ẋ5

 = −



0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 0 0 2
0 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0





x0
x1
x2
x3
x4
x5

 , γ =



1
0.3333

1
0.2

0.3333
2

 (5.13)

Again we define the analytical expression for verification purposes:

µ =
1

2
(ubx + lbx)e

1
2
σ2
at

2−µat

σ =

√
−1

3
(u2bx + l2bx + lbxubx)eσ2

at
2−µat

(5.14)

The resultant statistics are given by 5.11(a) and 5.11(b).
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FIGURE 5.12: PCE coefficients for 2d normal parameter and uniform
initial condition uncertainty.

These examples have demonstrated the basic structure of the PC framework and
how uncertainty is propagated within the system. The difference in application to
univariate and multivariate problems has been made clear and it is now possible to
move onto increasingly complex examples. More specifically, the following exam-
ples will encompass the optimisation process and exactly how the gPC framework
benefits stochastic trajectory design.

5.2 Linear Example

The first numerical example is an LTI system (as given by Eq. (3.17)). The problem
is to minimise the norm of final state, x(tf ), subject to time and control constraints.
The optimisation problem is formulated as such:

min J = x2(tf )

ẋ(t) = ax(t) + bu(t)

s.t. ‖u(t)‖ ≤ 10

x(0) = 2, t = [0, 5]s

(5.15)

where a = 1 and b = 1 in the deterministic case. In order to determine exactly
how uncertainty impacts upon the trajectory, both parameter uncertainty and ini-
tial condition uncertainty are explored. The distribution for the parameter is nor-
mal, a∼N(1, 0.05). The initial condition uncertainty also has a normal distribution,
x0∼N(2, 0.001).

First of all, one-dimensional parameter uncertainty is demonstrated in order to
highlight the differences in implementation between that and the multi-dimensional
problem. If a∼N(1, 0.05), then for a second order expansion (n = 2) there will be
n + 1 coefficients, and the initial parameter PCE coefficients are ai = [1, 0.05, 0].
Considering there is no uncertainty in the initial conditions (ie., σx = 0), the initial
condition PCE coefficients are x0 = [1, 0, 0]T . The transformation matrix, A, as given
by Eq. (3.19), is determined and the augmented system of equations is then:
Remark 4 Note that PCE values have been further validated using the PCET toolbox 46, in order to
verify the method and accuracy of quadrature techniques.
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ẋ =

ẋ0ẋ1
ẋ2

 =

 1 0.05 0
0.05 1 0.1

0 0.05 1

x0x1
x2

+

1
0
0

u (5.16)

This system is then solved by SPARTAN and the new optimal control solution is ob-
tained for the stochastic trajectory. The AOCP now involves minimizing the square
of expectation and standard deviation (i.e., variance). Now, in order to establish
whether the new control profile is in fact more robust in the presence of this uncer-
tainty, a Monte Carlo (MC) analysis is performed. Both the original deterministic
and the new stochastic systems are perturbed and the mean, µ, and standard devi-
ation, σ, are calculated. The effect on the control profile can be seen in Fig. 5.13(a),
whilst the corresponding PCE coefficients are shown in Fig. 5.13(b). Finally, the
MC analysis consisting of 1000 runs is demonstrated by Fig. 5.14, where it is very
apparent that the newly obtained stochastic control is far less perturbed by the un-
certainty in parameter. Considering this linear system is inherently unstable, it is
rather impressive that the expectation converges to a minimum value of 0.07528 us-
ing the new stochastic control, in comparison to 2.4589 in the deterministic case. It
is apparent that the original control solution offers no robustness to the uncertainty;
exhibiting wide divergence (with an std of 11.8551).
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(a) Control for 1d linear problem.
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(b) PCE coefficients for 1d problem.

FIGURE 5.13: 1d uncertainty: (a) 1d control comparison, and (b) 1d
PCE coefficients.

Now if both parameter and initial condition uncertainty are considered, the ini-
tial parameter PCE coefficients are ai = [1, 0, 0.05, 0, 0, 0] and x0 = [2, 0.001, 0, 0, 0, 0]T .
The augmented system to be solved is therefore:

ẋ =



ẋ0
ẋ1
ẋ2
ẋ3
ẋ4
ẋ5

 =



1 0 0.05 0 0 0
0 1 0 0 0.05 0

0.05 0 1 0 0 0.1
0 0 0 1 0 0
0 0.05 0 0 1 0
0 0 0.05 0 0 1





x0
x1
x2
x3
x4
x5

+



1
0
0
0
0
0

u (5.17)

For the two-dimensional problem, the control is shown in comparison to the one-
dimensional and deterministic cases (Fig. 5.15(a)), as are the coefficients (Fig. 5.15(b)).
The MC analysis is given in Fig. 5.16 and demonstrates that uncertainty in the ini-
tial condition results in a slightly degraded response due to the dispersion at the
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FIGURE 5.14: MC analysis for 1d linear problem.

end (a comparatively higher std of 1.5578, in the two-dimensional case). Despite
this, the augmented optimal control solution is still less sensitive to the uncertainties
than the deterministic control, as the final expectation and mean is several orders of
magnitude smaller than that of the original solution (see Tab. 5.1).
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(a) Control for 2d linear problem.
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(b) PCE coefficients for 2d linear problem.

FIGURE 5.15: 2d uncertainty: (a) 2d control comparison, and (b) 2d
PCE coefficients

A comparison between the solutions obtained for the one and two-dimensional
linear problems is presented in Tab. 5.1. Note that the deterministic cost is for the
original problem, containing no uncertainty. Thus, the obtained results which show
an increase in the cost for the stochastic problem are as expected. Additionally, the
optimised stochastic control solution shows a significant reduction in final expec-
tation and variance when compared to the original control; thus, emphasising the
benefit of the stochastic AOCP.
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FIGURE 5.16: MC analysis for 2d linear problem.

TABLE 5.1: Comparison of results for 1d and 2d linear problems.

1d

Control u Mean µ Std σ
Deterministic 2.4589 11.8551

Stochastic 0.0753 0.0308

2d

Mean µ Std σ
2.5556 11.9467
0.1603 1.5578

5.3 Non-Linear Example

The next example is a non-linear case47, where the cost function is a initial value
Mayer term:

min J = −x(tf )

s.t. ẋ(t) = a(−x(t) + x(t)u(t)− u(t)2)

x(0) = 1, tf = [0, 2]s

(5.18)

The stochastic quantities are a∼N(2.5, 0.1) and x0∼U(0.9, 1.1) i.e., normal parameter
and uniform initial condition with lower bound, lb, and upper bound, ub. For the
uniform distribution, µ = 1

2(lb + ub) and σ = 1
2(ub − lb). This example differs from

the previous, not only in the non-linearity aspect, but also in the fact that the control
is affected by the stochastic parameter. The initial parameter coefficients are ai =
[2.5, 0.1, 0] and the initial conditions are x0 = [1, 0, 0]T . The augmented stochastic
system is therefore:

ẋ(t) = −Ax(t) + u(t)Ax(t)−Bu(t)2 (5.19)

In the case of one-dimensional parameter uncertainty,

A =

2.5 0.1 0
0.1 2.5 0.2
0 0.1 2.5

 and B =

2.5
0.1
0

 (5.20)

A comparison of the obtained optimal solution and the original is shown in Fig.
6.12(a) and the corresponding PCE coefficients are shown in Fig. 6.12(b). As before,
a MC analysis of 1000 runs is performed in order to establish whether the newly op-
timised control is more robust in regard to the uncertainty (Fig. 5.18). The stochastic
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solution converges to a final expectation of -0.0040 - more than half that of the de-
terministic case. The solution also exhibits a much higher final convergence (with
an std of 8.2893e − 05, compared to 0.0018). Additionally, the stochastic solution
actually offers an improved cost function, which is far closer to zero (see Tab. 5.2).
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(a) Control for 1d non-linear problem.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

t (s)

-0.2

0

0.2

0.4

0.6

0.8

1

P
C

E
 C

oe
ffi

ci
en

ts
 (

X
)

X
0

X
1

X
2

(b) PCE Coefficients for 1d non-linear problem.

FIGURE 5.17: Control and PCE Coefficients for stochastic non-linear
problem (a) 1d control, and (b) 1d PCE coefficients.
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FIGURE 5.18: MC analysis for 1d non-linear problem.

For the two-dimensional case, the transformation matrices are given by Eq. (5.21).
The initial PCE coefficients for parameter and initial condition are ai = [2.5, 0, 0.1, 0, 0, 0]
and x0 = [1, 0.1, 0, 0, 0, 0]T , respectively.

A =



2.5 0 0.1 0 0 0
0 2.5 0 0 0.1 0

0.1 0 2.5 0 0 0.2
0 0 0 2.5 0 0
0 0.1 0 0 2.5 0
0 0 0.1 0 0 2.5

 and B =



2.5
0

0.1
0
0
0

 (5.21)

The control profile resulting from uncertainties in both the parameter and the initial
conditions is shown in Fig. 5.19(a), along with the one-dimensional and determin-
istic cases. The corresponding PCE coefficients are given in Fig. 5.19(b). Again it
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is noted that there are six coefficients due to the fact that it is a second order ex-
pansion, with two stochastic variables. The uncertainty in initial condition is very
obvious in both the stochastic and deterministic case, however, the former converges
very nicely to a final expectation of−4.7401e−04 due to this larger expansion. A full
comparison of the statistics for the one-dimensional and two-dimensional non-linear
problems is shown in Tab. 5.2.
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FIGURE 5.19: Control and PCE Coefficients for stochastic non-linear
problem (a) 2d control, and (b) 2d PCE coefficients.
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FIGURE 5.20: MC analysis for 2d non-linear problem.

TABLE 5.2: Comparison of results for 1d and 2d non-linear problems.

1d

Control u Mean µ Std σ
Deterministic 0.0091 0.0018

Stochastic -0.0040 8.2893e-05

2d

Mean µ Std σ
0.0092 0.00210

-4.7401e-4 3.3636e-04
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5.4 Hyper-sensitive Problem

A hyper-sensitive problem can be characterised as having three well defined seg-
ments: take-off, cruise, and landing. The so-called take-off and landing phases are
dependent on the boundary conditions, whilst cruise is subject to the system dy-
namics and the cost function. The OCP is deemed hyper-sensitive if the final time
is much larger in comparison to the contraction and expansion rates of the Hamil-
tonian system48. An increase in final time will results in a longer cruise segment, in
which the state is minimised49.

The OCP is defined as such28:

min J =

∫
1

2
(x2 + u2)

s.t. ẋ(t) = −ax(t)3 + u(t)

x(0) = 1.5, x(tf ) = 1 t = [0, 50]s

(5.22)

The stochastic system is then concerned with uniform uncertainty on the parameter,
a∼U(0.2, 1.8). This example varies from those covered previously due to the non-
linearity in the state dynamics. Consequently, the PCE will consist of two additional
basis functions, ψ(ξ).

ẋk(t) = − 1

< ψ2
k(ξ) >

<
P∑
i=0

ai(t)ψi(ξ)

 P∑
j=0

xj(t)ψj(ξ)

3

, ψk(ξ) > (5.23)

This is equivalent to:

ẋm(t) = − 1

< ψ2
m(ξ) >

<
P∑
i=0

P∑
j=0

P∑
k=0

P∑
l=0

ai(t)ψi(ξ)xj(t)ψj(ξ)xk(t)ψk(ξ)xl(t)ψl(ξ), ψm(ξ) >

(5.24)
The polynomial basis is thus the tensor product of 5 Legendre polynomials of the
order corresponding to the respective single index. For a second order expansion
P = 3. The initial PCE coefficients for the parameter as therefore ai = [1, 0.8, 0], and
the initial condition PCE coefficients are x0 = [1.5, 0, 0]T . The PCE will result in an
augmented matrix, A, of dimension [3 × 27]. Consequently, the Kronecker product
of the state, x, must also be taken to results in a [27× 1] vector. This is demonstrated
by Eq. (5.25), where xk denotes the Kronecker product of the state PCE coefficients.

xk = x⊗ (x⊗ x) (5.25)

The control profile obtained for the optimised stochastic system is presented in Fig.
5.21(a), and it can be seen that the uncertainty affects the control input in the initial
value and also the final value, however, the minimised profile is maintained and is
in agreement with previous work28. The original trajectory and the expectation of
the new stochastically optimal trajectory is depicted in Fig. 5.21(b).
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FIGURE 5.21: Control and expectation for 1d hyper-sensitive problem

The corresponding PCE coefficients are presented in Fig. 5.22. As expected, the
first coefficient demonstrates the characteristic of the minimised state - maintaining
a minimum throughout the majority of the time.
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FIGURE 5.22: PCE coefficients for 1d hyper-sensitive problem

If we now compare the expectation i.e. the first augmented state to the determin-
istic state, it is obvious that the stochastic system is optimised (Fig. 5.21(b)).

Considering that for this example, the cost function includes the control, the
manner in which the effectiveness of the stochastic solution is determined is slightly
different. First of all, the stochastic cost is the Lagrange term (previous examples
have been concerned purely with the Mayer term), and second of all, it is not merely
the case of minimising the expectation of the state. Instead, for the MC analysis the
cost function is evaluated using the deterministic and stochastic control solutions.
This was performed for 1000 runs, which is depicted in Fig. 5.23.

TABLE 5.3: Statistics for 1d hyper-sensitive problem

Control u Final Cost J(tf )
Deterministic 3.2578

Stochastic 3.0819
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FIGURE 5.23: MC analysis for 1d hyper-sensitive problem

5.5 Double Integrator

This example introduces the manner in which the stochastic augmented system is
derived for a Multi-Input, Multi-Output (MIMO) system. The OCP is to minimise
the final value of the first state, x1. The deterministic problem is therefore defined as
follows:

min J = ‖x1(t)‖
s.t. ẋ1(t) = x2(t)

ẋ2(t) = ax1(t) + u(t)

x(0) = [2, 1]

x1(tf ) = 0 t = [0, 10]s

(5.26)

where the parameter, a = 1 in the case of no uncertainty.

If we then introduce uncertainty to the parameter of distribution a∼N(1, 0.15) with
an expansion of n = 2, each state consists of 3 PCE terms, and the initial conditions
for the PCE are ai = [1, 0.015, 0], x10 = [2, 0, 0]T and x20 = [1, 0, 0]T . The PCE for
parameter uncertainty in is shown by Eq. 5.27

ẋ(t)1,k = x2,k(t)

ẋ(t)2,k =
1

< ψ2
k(ξ) >

P∑
i=0

P∑
j=0

ai(t)x1,j(t)ψi(ξ)ψj(ξ) + u(t), ψk(ξ) >
(5.27)

The stochastic cost function is a minimum expectation Mayer problem given by

J = E[x1(t)] (5.28)

Following evaluation of the integrals, eijk, and the inner products, γk, the simplified
stochastic augmented system is determined:

ẋ1(t) = A2x2(t)

ẋ2(t) = A1x1(t) +Bu(t)
(5.29)
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where,

A1 =

 1 0.15 0
0.15 1 0.3

0 0.15 1

 A2 =

1 0 0
0 1 0
0 0 1

 and B =

1
0
0

 (5.30)

Remark 4 It is important to note that the expansion for deterministic states will always consist of an
expansion as given by Eq. (3.7) with ai = 1 i.e. parameter and x0 = [µx, 0, ..., 0]

T .
The new stochastic control solution obtained from these dynamics is shown in Fig.
5.24.
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FIGURE 5.24: Control for 1d double integrator problem, n = 2

The PCE coefficients for the states x1 and x2 are shown in Figs. 5.25(a) and 5.25(a),
respectively. The expectation or mean, µ is given by the coefficient X0 and it can be
seen that the minimum expectation of the first state is reached - as was specified in
the stochastic cost function given by Eq. (5.28).
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(b) PCE coefficients for x2

FIGURE 5.25: PCE coefficients for 1d double integrator problem, n =
2

Next, MC analysis is performed for 1000 runs (Fig. 5.26) to provide a comparison
between the stochastic and deterministic control solutions. The aim is to establish
whether the new solution does in fact result in the minisation of the first state, when
subject to this uncertainty. The results are summarised in Tab. 5.4):



48 Chapter 5. Numerical Examples

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t (s)

0

5

10

15

x 1

stochastic deterministic

0.9 0.95 1
0

2

4

FIGURE 5.26: MC analysis for 1d double integrator problem, n = 2

TABLE 5.4: Comparison of final state for 1d parameter uncertainty,
n = 2

Problem Mean µ Std σ
Deterministic 0.0043 0.3106

Stochastic 0.0010 0.3069

From Tab. 5.4 it is clear that the stochastic solution offers a reduction in the
expectation of the state. However, an improvement can still be made by increasing
the order of expansion. Therefore we will now consider a PCE of n = 4. The control
profile obtained by the higher order expansion is given in Fig. 5.27 and shows a
greater difference in comparison to the deterministic control i.e. the higher the order,
the greater the difference between the two profiles. This is followed by the PCE
coefficients in Figs. 5.28(a) and 5.28(b).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t (s)

-80

-60

-40

-20

0

20

40

60

co
nt

ro
l (

u)

stochastic deterministic

FIGURE 5.27: Control for 1d double integrator problem, n = 4

Upon first glance, the MC analysis looks very similiar to the previous, however, a
reduction of the expectation has indeed been achieved. This is depicted in Tab. 5.5.

So the AOCP thus far has been for minimum expectation, as dictated by the
original cost function. However, from the MC analysis obtained, it is quite obvious
that the standard deviation is very high for both control solutions. Now we will
demonstrate the effect of including standard deviation in the cost function (see Ch.
4 and Eq. 4.1).
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(b) PCE coefficients for x2

FIGURE 5.28: PCE coefficients for 1d double integrator problem, n =
4
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FIGURE 5.29: MC analysis for 1d double integrator problem, n = 4

TABLE 5.5: Comparison of final state for 1d parameter uncertainty,
n = 4

Problem Mean µ Std σ
Deterministic 0.0043 0.3106

Stochastic 9.9451e-04 0.3034

The PCE coefficients shown in Figs. 5.30(a) and 5.30(b) differ from those obtained
previously in that the expectation is reduced quite drastically. The response for the
x1 augmented terms is desirable, however, you can see the response of x2 is quite
sharp. After all, the second state is not specified in the stochastic cost function and
is the derivative of ther terms shown in Fig. 5.30(a).
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(b) PCE coefficients for x2

FIGURE 5.30: PCE coefficients for 1d double integrator problem, n =
4 (minimum std)
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FIGURE 5.31: MC analysis for 1d double integrator problem, n = 4
(minimum std)

The MC analysis shows a drastic difference in the convergence of the solution.
Evidently, the standard deviation of the trajectory has been reduced considerably.
A comparison of results for the new minimum expectation and standard deviation
profile is shown in Tab. 5.6.

TABLE 5.6: Comparison of final state for 1d parameter uncertainty,
n = 4 (minimum std)

Problem Mean µ Std σ
Deterministic 0.0043 0.3106

Stochastic -0.0037 0.0485
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Chapter 6

Validation of Polynomial Chaos
Expansions

6.1 PCET Toolbox

In order to validate the PCE obtained via the Galerkin Projection method, the PCET
(Polynomial Chaos Expansion Toolbox) was used. This is a MATLAB-based tool-
box that has been developed at Technische Universität Chemnitz46;50. It has been
developed for application to stochastic non-linear control systems, and is capable of
performing uncertainty propagation and parameter estimation. This is achieved by
Galerkin Projection or Stochastic Collocation, and it also offers MC analysis. In the
early development of this work, it offered a very important verification step. PCET
employs the symbolic toolbox within MATLAB to perform the PCE, however, the
process in SPARTAN does not require any additional toolbox.

6.2 Example Zero

This is the first problem that was validated using PCET. As previously defined in
Ch. 5, the one-dimensional problem given by Eq. (5.1) and presented here concerns
uncertainty in the parameter with a distribution a∼N(0, 1). First, we consider the
problem for n = 2. The resultant 3 PCE coefficients are given for both SPARTAN
and PCET:
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(a) SPARTAN PCE coefficients for 1d Example
Zero.
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(b) PCET PCE coefficients for 1d Example Zero.

FIGURE 6.1: PCE coefficients for 1d Example Zero (n=2) (a) SPAR-
TAN, and (b) PCET.



52 Chapter 6. Validation of Polynomial Chaos Expansions

The mean, or expectation, E[x], is given by 6.2(a), whilst the standard deviation
is presented by 6.2(b). Both demonstrate full agreement between SPARTAN and
PCET, however, it is noticeable that the standard deviation, σ, is not matching the
analytical value, whilst the MC of 7000 runs does. This is due to the fact that when
dealing with a complex system, the system is better represented by a higher order
expansion. Despite this, both SPARTAN and PCET agree.
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FIGURE 6.2: Statistics for 1d Example Zero (n = 2) (a) mean, and (b)
std.

In order to demonstrate this, an expansion of n = 4 was also performed. The
augmented system thus consists of 5 PCE coefficients, which are depicted in Figs.
6.3(a) and 6.3(b). Again, SPARTAN and PCET convey identical results, which now
match the true solution. These results also demonstrate a higher accuracy that that
achieved with the MC (Figs. 6.4(a) and 6.4(b)).
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(a) SPARTAN PCE coefficients for 1d Example
Zero.
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(b) PCET PCE coefficients for 1d Example Zero.

FIGURE 6.3: PCE coefficients for 1d Example Zero (n=4) (a) SPAR-
TAN, and (b) PCET.

Next, multi-dimensional uncertainty is considered, and which has mixed distri-
butions. The parameter a∼N(0, 1), whilst the initial condition is uniform - x0∼U(0.4, 1.6).
There are thus 6 PCE coefficients for n = 2 and they are shown in Figs. 6.5(a) and
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FIGURE 6.4: Statistics for 1d Example Zero (n = 4) (a) mean (b) std.

6.5(b). The corresponding statistics are depicted by Figs. 6.6(a) and 6.6(b). The solu-
tions of SPARTAN and PCET are identical as before, and full convergence with the
analytical solution is achieved by increasing n.
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(a) SPARTAN PCE coefficients for 2d Example
Zero.
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(b) PCET PCE coefficients for 2d Example Zero.

FIGURE 6.5: PCE coefficients for 2d Example Zero (n=4) (a) SPAR-
TAN, and (b) PCET.

6.3 Non-linear Example

Next, a non-linear example is considered. It is important to make a distinction here
- non-linearity occurs in the dynamics and/or the uncertainties. For instance, the
problem given by Eq. 6.1 includes the former, since we will only consider a single
uncertainty (d = 1). However, the PCE is multi-dimensional due to the higher-
dimensional term. This was demonstrated in the optimisation of the Hyper-sensitive
problem (i.e x3). Now if we consider it purely in terms of the PCE, the system is
represented as such:

ẋ(t) = −ax(t)3 (6.1)
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FIGURE 6.6: Statistics for 2d Example Zero (n = 2) (a) mean, and (b)
std.

Uncertainty is placed upon the parameter with a uniform distribution a∼U(0.2, 0.8).
It is now trivial to note that for a 1d expansion, there are n + 1 coefficients. The
resultant augmented matrix, A, is of dimension [3 × 27] and is identical for both
SPARTAN and PCET. These coefficients are shown in Figs. 6.7(a) and 6.7(b).
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FIGURE 6.7: PCE coefficients for Non-linear problem (n = 2) (a) SPAR-
TAN, and (b) PCET.

The statistics that are subsequently deduced are therefore again equivalent for
both SPARTAN and PCET. The mean and standard deviation of the MC demon-
strated a very slight deviation for 1000 runs, however, they are equivalent for 2000
runs (as shown in Fig. 6.8(b)).
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6.4 Lorenz Attractor

The final example presented here within the validation process is that of the Lorenz
attractor - a problem that originates in the field of fluid dynamics. The original
system exhibited chaotic behaviour - vast differences were obtained when small
changes were made to the initial conditions. This is considered one of the earli-
est observations of the Butterfly Effect51. This set of coupled non-linear differential
equations can lead to some interesting trajectories. The deterministic solution is de-
picted by Fig. 6.9.

ẋ1(t) = σ(x2(t)− x1(t))
ẋ2(t) = x1(t)(ρ− x3(t))− x2(t)
ẋ3(t) = x1(t)x2(t)− αx3(t)
x(0) = [1.5,−1.5, 25.5]T , σ = 10, ρ = 28, α = 2.667

(6.2)

Now for the uncertainty analysis, the multi-dimensional case is performed in
which each parameter is stochastic. First, each parameter is given a normal distri-
bution, with σ = 0.1. Consequently, the overall order of expansion is P = 10, which
dictates the number of PCE coefficients for each augmented state. The expansion of
states, x, are shown in Figs. 6.11(a) - 6.11(f), respectively. The resultant expectation
and standard deviation of each state is depicted in Figs. 6.10(a) and 6.10(b):

The problem was then performed using n = 4, considering that the MC diverges
a little towards the end. This again demonstrated a slight difference for the first state,
however, the solution from SPARTAN and PCET are in agreement with the expected
solution as covered by Bhattachayra52. The number of MC runs was increased from
1000 to 10000, but the same solution was achieved. Due to the fact that the MC sim-
ulation output from PCET also had the same issue, it can be inferred that a relatively
small MC campaign is unable to capture this system as accurately as that of PC.
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FIGURE 6.9: Deterministic solution of Lorenz Attractor.

For this example, it is important to note that PCET employs a slightly different
Graded Lexicographic multi-indexing method than employed here4, which means
that for d > 2, the entries in the augmented matrix, A, will be positions in a slightly
different manner however this does not impact the solution in any way.
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FIGURE 6.10: Statistics for Lorenz attractor problem (n = 2) (a) mean,
and (b) std.
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(b) PCE coefficients for x1 of 2nd order Lorenz
problem
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(c) PCE coefficients for x2 of 2nd order Lorenz
problem
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problem
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(e) PCE coefficients for x3 of 2nd order Lorenz
problem

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t (s)

-5

0

5

10

15

20

25

30

35

40

P
C

E
 C

oe
ffi

ci
en

ts
 (

X
3)

X
0

X
1

X
2

x
3

X
4

X
5

X
6

X
7

X
8

X
9

(f) PCE coefficients for x3 of 2nd order Lorenz
problem

FIGURE 6.11: PCE coefficients for Lorenz attractor problem (n = 2) (a)
SPARTAN x1 (b) PCET x1 (c) SPARTAN x2 (d) PCET x2 (e) SPARTAN

x3, and (f) PCET x3 .
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Chapter 7

Conclusions

It has been demonstrated how to obtain optimal trajectories in the presence of un-
certainties. Multivariate polynomial chaos is a very effective method for uncertainty
propagation, offering accurate results without heavy computational implications.
Uncertainty modelling was performed using the PCE method, and the Galerkin pro-
jection was used in order to transform the stochastic system into the augmented
deterministic equivalent.

The original cost functions were transformed into their corresponding stochastic
equivalent, in which we are able to manipulate quantities such as mean and stan-
dard deviation. The resultant deterministic system was subsequently solved using
NLP transcription, performed by SPARTAN, in order to obtain the stochastic optimal
trajectory. These principles were demonstrated by a variety of numerical examples.
This demonstrated the capability to analyse multi-dimensional, mixed distribution
problems. This has been done in order to convey the benefits of gPC in application
to stochastic optimal trajectory generation problems. Results clearly show an im-
provement in performance with respect to deterministic classic approach of several
orders of magnitude.

The implementation of the PCE method is currently able to analyse problems
containing up to 5 random quantities and non-linear dynamics terms up to the 7th

order, however, it has been developed in a manner that will make any extension to
this simple. Future work will include improving the automatic nature of the analy-
sis; particularly in terms of the interface with SPARTAN. This will lead to the ability
to solve much more complex systems. It would also be interesting to extend the
distributions that can be modelled by this framework, and not be limited to only
Gaussian and Uniform stochastic variables.
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Appendix A

Polynomial Chaos Expansion for
one dimensional Linear System

The derivation presented here represents a one-dimensional uncertainty for linear
systems. Due to the univariate nature of the problem, the order of expansion is sim-
ply related to the highest order of polynomial, i.e. n+ 1. If we consider a second or-
der expansion, there there will be three resulting PCE coefficients in the augmented
system and hence, A is a [3 × 3] matrix. The subscript of each univariate polyno-
mial base, ψ, is the single index, i, j, k, respectively and conveys the order of the
polynomial.

ẋ =

ẋ0ẋ1
ẋ2

 =

A00 A01 A02

A10 A11 A12

A20 A21 A22

x0x1
x2

 (A.1)

where,

ẋ0 terms


γ0 = < ψ2

0(ξ) > =
∫
ψ0(ξ)ψ0(ξ)

A00 = 1
γ0

[a0
∫
ψ0(ξ)ψ0(ξ)ψ0(ξ) + a1

∫
ψ1(ξ)ψ0(ξ)ψ0(ξ) + a2

∫
ψ2(ξ)ψ0(ξ)ψ0(ξ)]

A01 = 1
γ0

[a0
∫
ψ0(ξ)ψ1(ξ)ψ0(ξ) + a1

∫
ψ1(ξ)ψ1(ξ)ψ0(ξ) + a2

∫
ψ2(ξ)ψ1(ξ)ψ0(ξ)]

A02 = 1
γ0

[a0
∫
ψ0(ξ)ψ2(ξ)ψ0(ξ) + a1

∫
ψ1(ξ)ψ2(ξ)ψ0(ξ) + a2

∫
ψ2(ξ)ψ2(ξ)ψ0(ξ)]

(A.2)

ẋ1 terms


γ1 = < ψ2

1(ξ) > =
∫
ψ1(ξ)ψ1(ξ)

A10 = 1
γ1

[a0
∫
ψ0(ξ)ψ0(ξ)ψ1(ξ) + a1

∫
ψ1(ξ)ψ0(ξ)ψ1(ξ) + a2

∫
ψ2(ξ)ψ0(ξ)ψ1(ξ)]

A11 = 1
γ1

[a0
∫
ψ0(ξ)ψ1(ξ)ψ1(ξ) + a1

∫
ψ1(ξ)ψ1(ξ)ψ1(ξ) + a2

∫
ψ2(ξ)ψ1(ξ)ψ1(ξ)]

A12 = 1
γ1

[a0
∫
ψ0(ξ)ψ2(ξ)ψ1(ξ) + a1

∫
ψ1(ξ)ψ2(ξ)ψ1(ξ) + a2

∫
ψ2(ξ)ψ1(ξ)ψ1(ξ)]

(A.3)

ẋ2 terms


γ2 = < ψ2

2(ξ) > =
∫
ψ2(ξ)ψ2(ξ)

A20 = 1
γ2

[a0
∫
ψ0(ξ)ψ0(ξ)ψ2(ξ) + a1

∫
ψ1(ξ)ψ0(ξ)ψ2(ξ) + a2

∫
ψ2(ξ)ψ0(ξ)ψ2(ξ)]

A21 = 1
γ2

[a0
∫
ψ0(ξ)ψ1(ξ)ψ2(ξ) + a1

∫
ψ1(ξ)ψ0(ξ)ψ2(ξ) + a2

∫
ψ2(ξ)ψ0(ξ)ψ2(ξ)]

A22 = 1
γ2

[a0
∫
ψ0(ξ)ψ2(ξ)ψ2(ξ) + a1

∫
ψ1(ξ)ψ2(ξ)ψ2(ξ) + a2

∫
ψ2(ξ)ψ2(ξ)ψ2(ξ)]

(A.4)
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Note that the third component in each A term is zero since the PCE coefficient ma-
trix is ai = [µa, σa, 0] for one-dimensional parameter uncertainty. It also follows that
these relationships are further simplified for the case of initial condition uncertainty
due to the fact that the only non-zero initial PCE coefficient is µa.
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Appendix B

Polynomial Chaos Expansion for
two dimensional Linear System

In order to fully demonstrate how the multivariate PC system is derived, the full
integral solution for a two-dimensional problem is given. This is for an order of ex-
pansion, n = 2, and since there are two random variables i.e. d = 2, there are six PCE
coefficients (P = 6). The subscript of each polynomial base corresponds to the multi-
index and the notation has been shortened for the multivariate polynomial basis so
that for e.g., ψ10(ξ) = ψ1(ξ1)ψ0(ξ2). Where ψ1(ξ1) is the 1st order univariate polyno-
mial corresponding to the distribution of the parameter, whilst ψ0(ξ2) is a univariate
polynomial of order zero related to the distribution of the initial condition.

ẋ =



ẋ0
ẋ1
ẋ2
ẋ3
ẋ4
ẋ5





A00 A01 A02 A03 A04 A05

A10 A11 A12 A13 A14 A15

A20 A21 A22 A23 A24 A25

A30 A31 A32 A33 A34 A35

A40 A41 A42 A43 A44 A45

A50 A51 A52 A53 A54 A55





x0
x1
x2
x3
x4
x5

 (B.1)

where,

ẋ0 terms



γ0 = < ψ2
00(ξ) > =

∫
ψ00(ξ)ψ00(ξ)

A00 = 1
γ0

[a0
∫
ψ00(ξ)ψ00(ξ)ψ00(ξ) + a2

∫
ψ01(ξ)ψ00(ξ)ψ00(ξ)]

A01 = 1
γ0

[a0
∫
ψ00(ξ)ψ10(ξ)ψ00(ξ) + a2

∫
ψ01(ξ)ψ10(ξ)ψ00(ξ)]

A02 = 1
γ0

[a0
∫
ψ00(ξ)ψ01(ξ)ψ00(ξ) + a2

∫
ψ01(ξ)ψ01(ξ)ψ00(ξ)]

A03 = 1
γ0

[a0
∫
ψ00(ξ)ψ20(ξ)ψ00(ξ) + a2

∫
ψ01(ξ)ψ20(ξ)ψ00(ξ)]

A04 = 1
γ0

[a0
∫
ψ00(ξ)ψ11(ξ)ψ00(ξ) + a2

∫
ψ01(ξ)ψ11(ξ)ψ00(ξ)]

A05 = 1
γ0

[a0
∫
ψ00(ξ)ψ02(ξ)ψ00(ξ) + a2

∫
ψ01(ξ)ψ02(ξ)ψ00(ξ)]

(B.2)

ẋ1 terms



γ1 = < ψ2
10(ξ) > =

∫
ψ10(ξ)ψ10(ξ)

A10 = 1
γ1

[a0
∫
ψ00(ξ)ψ00(ξ)ψ10(ξ) + a2

∫
ψ01(ξ)ψ00(ξ)ψ10(ξ)]

A11 = 1
γ1

[a0
∫
ψ00(ξ)ψ10(ξ)ψ10(ξ) + a2

∫
ψ01(ξ)ψ10(ξ)ψ10(ξ)]

A12 = 1
γ1

[a0
∫
ψ00(ξ)ψ01(ξ)ψ10(ξ) + a2

∫
ψ01(ξ)ψ01(ξ)ψ10(ξ)]

A13 = 1
γ1

[a0
∫
ψ00(ξ)ψ20(ξ)ψ10(ξ) + a2

∫
ψ01(ξ)ψ20(ξ)ψ10(ξ)]

A14 = 1
γ1

[a0
∫
ψ00(ξ)ψ11(ξ)ψ10(ξ) + a2

∫
ψ01(ξ)ψ11(ξ)ψ10(ξ)]

A15 = 1
γ1

[a0
∫
ψ00(ξ)ψ02(ξ)ψ10(ξ) + a2

∫
ψ01(ξ)ψ02(ξ)ψ10(ξ)]

(B.3)
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ẋ2 terms



γ2 = < ψ2
01(ξ) > =

∫
ψ01(ξ)ψ01(ξ)

A20 = 1
γ2

[a0
∫
ψ00(ξ)ψ00(ξ)ψ01(ξ) + a2

∫
ψ01(ξ)ψ00(ξ)ψ01(ξ)]

A21 = 1
γ2

[a0
∫
ψ00(ξ)ψ10(ξ)ψ01(ξ) + a2

∫
ψ01(ξ)ψ10(ξ)ψ01(ξ)]

A22 = 1
γ2

[a0
∫
ψ00(ξ)ψ01(ξ)ψ01(ξ) + a2

∫
ψ01(ξ)ψ01(ξ)ψ01(ξ)]

A23 = 1
γ2

[a0
∫
ψ00(ξ)ψ20(ξ)ψ01(ξ) + a2

∫
ψ01(ξ)ψ20(ξ)ψ01(ξ)]

A24 = 1
γ2

[a0
∫
ψ00(ξ)ψ11(ξ)ψ01(ξ) + a2

∫
ψ01(ξ)ψ11(ξ)ψ01(ξ)]

A25 = 1
γ2

[a0
∫
ψ00(ξ)ψ02(ξ)ψ01(ξ) + a2

∫
ψ01(ξ)ψ02(ξ)ψ01(ξ)]

(B.4)

ẋ3 terms



γ3 = < ψ2
20(ξ) > =

∫
ψ20(ξ)ψ20(ξ)

A30 = 1
γ3

[a0
∫
ψ00(ξ)ψ00(ξ)ψ20(ξ) + a2

∫
ψ01(ξ)ψ00(ξ)ψ20(ξ)]

A31 = 1
γ3

[a0
∫
ψ00(ξ)ψ10(ξ)ψ20(ξ) + a2

∫
ψ01(ξ)ψ10(ξ)ψ20(ξ)]

A32 = 1
γ3

[a0
∫
ψ00(ξ)ψ01(ξ)ψ20(ξ) + a2

∫
ψ01(ξ)ψ01(ξ)ψ20(ξ)]

A33 = 1
γ3

[a0
∫
ψ00(ξ)ψ20(ξ)ψ20(ξ) + a2

∫
ψ01(ξ)ψ20(ξ)ψ20(ξ)]

A34 = 1
γ3

[a0
∫
ψ00(ξ)ψ11(ξ)ψ20(ξ) + a2

∫
ψ01(ξ)ψ11(ξ)ψ20(ξ)]

A35 = 1
γ3

[a0
∫
ψ00(ξ)ψ02(ξ)ψ20(ξ) + a2

∫
ψ01(ξ)ψ02(ξ)ψ20(ξ)]

(B.5)

ẋ4 terms



γ4 = < ψ2
11(ξ) > =

∫
ψ11(ξ)ψ11(ξ)

A40 = 1
γ4

[a0
∫
ψ00(ξ)ψ00(ξ)ψ11(ξ) + a2

∫
ψ01(ξ)ψ00(ξ)ψ11(ξ)]

A41 = 1
γ4

[a0
∫
ψ00(ξ)ψ10(ξ)ψ11(ξ) + a2

∫
ψ01(ξ)ψ10(ξ)ψ11(ξ)]

A42 = 1
γ4

[a0
∫
ψ00(ξ)ψ01(ξ)ψ11(ξ) + a2

∫
ψ01(ξ)ψ01(ξ)ψ11(ξ)]

A43 = 1
γ4

[a0
∫
ψ00(ξ)ψ20(ξ)ψ11(ξ) + a2

∫
ψ01(ξ)ψ20(ξ)ψ11(ξ)]

A44 = 1
γ4

[a0
∫
ψ00(ξ)ψ11(ξ)ψ11(ξ) + a2

∫
ψ01(ξ)ψ11(ξ)ψ11(ξ)]

A45 = 1
γ4

[a0
∫
ψ00(ξ)ψ02(ξ)ψ11(ξ) + a2

∫
ψ01(ξ)ψ02(ξ)ψ11(ξ)]

(B.6)

ẋ5 terms



γ5 = < ψ2
02(ξ) > =

∫
ψ02(ξ)ψ02(ξ)

A50 = 1
γ5

[a0
∫
ψ00(ξ)ψ00(ξ)ψ02(ξ) + a2

∫
ψ01(ξ)ψ00(ξ)ψ02(ξ)]

A51 = 1
γ5

[a0
∫
ψ00(ξ)ψ10(ξ)ψ02(ξ) + a2

∫
ψ01(ξ)ψ10(ξ)ψ02(ξ)]

A52 = 1
γ5

[a0
∫
ψ00(ξ)ψ01(ξ)ψ02(ξ) + a2

∫
ψ01(ξ)ψ01(ξ)ψ02(ξ)]

A53 = 1
γ5

[a0
∫
ψ00(ξ)ψ20(ξ)ψ02(ξ) + a2

∫
ψ01(ξ)ψ20(ξ)ψ02(ξ)]

A54 = 1
γ5

[a0
∫
ψ00(ξ)ψ11(ξ)ψ02(ξ) + a2

∫
ψ01(ξ)ψ11(ξ)ψ02(ξ)]

A55 = 1
γ5

[a0
∫
ψ00(ξ)ψ02(ξ)ψ02(ξ) + a2

∫
ψ01(ξ)ψ02(ξ)ψ02(ξ)]

(B.7)

Here the integral terms corresponding to a zero initial PCE coefficient have been
omitted for brevity. Due to the fact that ai = [µa, 0, σa, 0, ..., 0], there are only two
integral terms in each A matrix entry.
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