Sousa, Victor C. B. and Patel, Danish and Chapelier, J.-B. and Wagner, Alexander and Scalo, Carlo (2018) Numerical Investigation of Second-Mode Attenuation over Carbon/Carbon Porous Surfaces. Journal of Spacecraft and Rockets, 210059, pp. 1-11. American Institute of Aeronautics and Astronautics (AIAA). doi: 10.2514/1.A34294. ISSN 0022-4650.
Full text not available from this repository.
Official URL: https://arxiv.org/abs/1712.03309
Abstract
We have carried out axisymmetric numerical simulations of a spatially developing hypersonic boundary layer over a sharp 7◦ -half-angle cone at M∞ = 7.5 inspired by the experimental investigations by Wagner (2015). Simulations are first performed with impermeable (or solid) walls with a one-time broadband pulse excitation applied upstream to determine the most convectively-amplified frequencies resulting in the range 260kHz – 400kHz, consistent with experimental observations of second-mode instability waves. Subsequently, we introduce harmonic disturbances via continuous periodic suction and blowing at 270kHz and 350kHz. For each of these forcing frequencies complex impedance boundary conditions (IBC), modeling the acoustic response of two different carbon/carbon (C/C) ultrasonically absorptive porous surfaces, are applied at the wall. The IBCs are derived as an output of a pore-scale aeroacoustic analysis – the inverse Helmholtz Solver (iHS) – which is able to return the broadband real and imaginary components of the surface-averaged impedance. The introduction of the IBCs in all cases leads to a significant attenuation of the harmonically-forced second-mode wave. In particular, we observe a higher attenuation rate of the introduced waves with frequency of 350kHz in comparison with 270kHz, and, along with the iHS impedance results, we establish that the C/C surfaces absorb acoustic energy more effectively at higher frequencies. © 2018 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
Item URL in elib: | https://elib.dlr.de/121421/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||
Title: | Numerical Investigation of Second-Mode Attenuation over Carbon/Carbon Porous Surfaces | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | 7 January 2018 | ||||||||||||||||||||||||
Journal or Publication Title: | Journal of Spacecraft and Rockets | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||
Volume: | 210059 | ||||||||||||||||||||||||
DOI: | 10.2514/1.A34294 | ||||||||||||||||||||||||
Page Range: | pp. 1-11 | ||||||||||||||||||||||||
Editors: |
| ||||||||||||||||||||||||
Publisher: | American Institute of Aeronautics and Astronautics (AIAA) | ||||||||||||||||||||||||
ISSN: | 0022-4650 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | porous coatings, HEG, UAT, hypersonic Transition, Transition delay, cone, Inverse Helmholtz Solver | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Space Transportation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R RP - Space Transportation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Wiederverwendbare Raumfahrtsysteme (old) | ||||||||||||||||||||||||
Location: | Göttingen | ||||||||||||||||||||||||
Institutes and Institutions: | Institute for Aerodynamics and Flow Technology > Spacecraft, GO | ||||||||||||||||||||||||
Deposited By: | Wagner, Alexander | ||||||||||||||||||||||||
Deposited On: | 05 Jan 2019 14:02 | ||||||||||||||||||||||||
Last Modified: | 03 Aug 2023 11:32 |
Repository Staff Only: item control page