elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Tree species classification using plant functional traits from LiDAR and hyperspectral data

Shi, Yifang and Skidmore, Andrew and Wang, Tiejun and Holzwarth, Stefanie and Heiden, Uta and Pinnel, Nicole and Zhu, Xi and Heurich, Marco (2018) Tree species classification using plant functional traits from LiDAR and hyperspectral data. International Journal of Applied Earth Observation and Geoinformation (73), pp. 207-219. Elsevier. doi: 10.1016/j.jag.2018.06.018. ISSN 1569-8432.

Full text not available from this repository.

Official URL: https://www.sciencedirect.com/science/article/pii/S030324341830504X#!


Item URL in elib:https://elib.dlr.de/121020/
Document Type:Article
Title:Tree species classification using plant functional traits from LiDAR and hyperspectral data
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Shi, YifangUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Skidmore, AndrewUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Wang, TiejunUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Holzwarth, StefanieUNSPECIFIEDhttps://orcid.org/0000-0001-7364-7006UNSPECIFIED
Heiden, UtaUNSPECIFIEDhttps://orcid.org/0000-0002-3865-1912UNSPECIFIED
Pinnel, NicoleUNSPECIFIEDhttps://orcid.org/0000-0003-1978-3204UNSPECIFIED
Zhu, XiUNSPECIFIEDhttps://orcid.org/0000-0003-0556-5732UNSPECIFIED
Heurich, MarcoBavarian Forest National Park, Department of ResearchUNSPECIFIEDUNSPECIFIED
Date:December 2018
Journal or Publication Title:International Journal of Applied Earth Observation and Geoinformation
Refereed publication:Yes
Open Access:No
Gold Open Access:No
In SCOPUS:Yes
In ISI Web of Science:Yes
DOI:10.1016/j.jag.2018.06.018
Page Range:pp. 207-219
Publisher:Elsevier
ISSN:1569-8432
Status:Published
Keywords:Tree species classification; Plant functional traits; Airborne LiDAR; Airborne hyperspectral; Natural forest; HySpex
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Space
HGF - Program Themes:Earth Observation
DLR - Research area:Raumfahrt
DLR - Program:R EO - Earth Observation
DLR - Research theme (Project):R - Remote Sensing and Geo Research
Location: Oberpfaffenhofen
Institutes and Institutions:German Remote Sensing Data Center > Land Surface
Deposited By: Holzwarth, Stefanie
Deposited On:30 Jul 2018 10:31
Last Modified:17 Aug 2021 09:43

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.