elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Buoyancy-induced effects on large-scale motions in differentially heated vertical channel flows studied in direct numerical simulations

Wetzel, Tim und Wagner, Claus (2018) Buoyancy-induced effects on large-scale motions in differentially heated vertical channel flows studied in direct numerical simulations. International Journal of Heat and Fluid Flow, 75, Seiten 14-26. Elsevier. doi: 10.1016/j.ijheatfluidflow.2018.09.005. ISSN 0142-727X.

[img] PDF - Nur DLR-intern zugänglich - Postprintversion (akzeptierte Manuskriptversion)
1MB

Offizielle URL: https://doi.org/10.1016/j.ijheatfluidflow.2018.09.005

Kurzfassung

Direct numerical simulations of turbulent convection in a differentially heated vertical channel flow with Prandtl number Pr = 0.71 are conducted with a fourth-order accurate finite volume method for a bulk Reynolds number Re_b=4328 and three Grashof numbers Gr = {0, 6.4x10^5, 9.5x10^5}. The analysis of instantaneous flow field snapshots, first- and second-order moments, budget equations, power density spectra and quadrant analyses shows that the turbulent velocity fluctuations are attenuated in the aiding flow and enhanced in the opposing flow. In contrast, temperature fluctuations are attenuated in the opposing flow and enhanced in the aiding flow. The analyses further reveal that the low-momentum flow structures in the aiding flow are warmer than the high-momentum flow structures and vice versa in the opposing flow. Due to their different temperatures, buoyancy accelerates and decelerates the flow structures differently, which leads to reduced and increased pressure and shear fluctuations in the aiding and opposing flow. Thus, the redistribution of turbulent velocity fluctuations is lower in the aiding flow and higher in the opposing flow. The Reynolds shear stresses are consequently decreased in the former and increased in the latter, influencing the production of streamwise velocity fluctuations accordingly. In summary, the discussed physical mechanisms underline the indirect effect of buoyancy on the turbulent velocity fluctuations.

elib-URL des Eintrags:https://elib.dlr.de/120666/
Dokumentart:Zeitschriftenbeitrag
Titel:Buoyancy-induced effects on large-scale motions in differentially heated vertical channel flows studied in direct numerical simulations
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Wetzel, TimTim.Wetzel (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Wagner, Clausclaus.wagner (at) dlr.dehttps://orcid.org/0000-0003-2273-0568NICHT SPEZIFIZIERT
Datum:17 November 2018
Erschienen in:International Journal of Heat and Fluid Flow
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:75
DOI:10.1016/j.ijheatfluidflow.2018.09.005
Seitenbereich:Seiten 14-26
Herausgeber:
HerausgeberInstitution und/oder E-Mail-Adresse der HerausgeberHerausgeber-ORCID-iDORCID Put Code
Jakirlic, SuadNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Verlag:Elsevier
Name der Reihe:elvesier science direct
ISSN:0142-727X
Status:veröffentlicht
Stichwörter:direct numerical simulation; turbulent mixed convection; turbulence attenuation; channel flow; buoyancy
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Bodengebundener Verkehr (alt)
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V BF - Bodengebundene Fahrzeuge
DLR - Teilgebiet (Projekt, Vorhaben):V - Next Generation Train III (alt)
Standort: Göttingen
Institute & Einrichtungen:Institut für Aerodynamik und Strömungstechnik > Bodengebundene Fahrzeuge
Hinterlegt von: Wetzel, Tim
Hinterlegt am:23 Nov 2018 17:29
Letzte Änderung:02 Nov 2023 09:37

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.