Wang, Yuanyuan und Zhu, Xiao Xiang (2018) Robust nonlinear blind SAR tomography in urban areas. In: Proceedings of the European Conference on Synthetic Aperture Radar, EUSAR, Seiten 594-599. EUSAR 2018, 2018-06-04 - 2018-06-07, Aachen, Germany. ISBN 978-3-8007-4636-1. ISSN 2197-4403.
PDF
- Nur DLR-intern zugänglich
1MB |
Kurzfassung
Synthetic aperture radar has been widely exploited for the reconstruction of 3-D urban models. Resolving the layovered scatterers in SAR images is typically tackled by an explicit inversion of the SAR imaging model, which is otherwise known as SAR tomography (TomoSAR). TomoSAR is essentially a spectral estimation problem. Existing algorithms usually do not have a closed-form solution, rendering them computationally expensive. This paper demonstrates a robust nonlinear blind SAR tomographic method via kernel principle component analysis (KPCA) to unmix the layovered scatterers, avoiding the computationally expensive multidimensional tomographic inversion. We demonstrate that the state-of-the-art linear PCA-based methods are limited by its strict assumption of orthogonal signals, as well as by its assumption of ergodic Gaussian samples that are often violated in urban area. Experiments on real data show that the proposed method outperforms the state-of-the-art by a factor of three in terms of the accuracy of the phase estimates of individual scatterers.
elib-URL des Eintrags: | https://elib.dlr.de/120439/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
Titel: | Robust nonlinear blind SAR tomography in urban areas | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | Juni 2018 | ||||||||||||
Erschienen in: | Proceedings of the European Conference on Synthetic Aperture Radar, EUSAR | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Nein | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Nein | ||||||||||||
Seitenbereich: | Seiten 594-599 | ||||||||||||
ISSN: | 2197-4403 | ||||||||||||
ISBN: | 978-3-8007-4636-1 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | PCA, kernel PCA, blind source separation, TomoSAR, InSAR, multibaseline, SAR, covariance matrix | ||||||||||||
Veranstaltungstitel: | EUSAR 2018 | ||||||||||||
Veranstaltungsort: | Aachen, Germany | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsbeginn: | 4 Juni 2018 | ||||||||||||
Veranstaltungsende: | 7 Juni 2018 | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||
Hinterlegt von: | Wang, Yuanyuan | ||||||||||||
Hinterlegt am: | 20 Jun 2018 13:09 | ||||||||||||
Letzte Änderung: | 24 Apr 2024 20:24 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags