Qiu, Chunping und Schmitt, Michael und Mou, LiChao und Zhu, Xiao Xiang (2018) Urban Local Climate Zone Classification with a Residual Convolutional Neural Network and Multi-Seasonal Sentinel-2 images. In: 10th IAPR Workshop on Pattern Recognition in Remote Sensing, Seiten 1-5. IEEE Xplore. 10th IAPR Workshop on Pattern Recognition in Remote Sensing, 2018-08-19 - 2018-08-20, Peking, China. doi: 10.1109/PRRS.2018.8486155. ISSN 2377-0198.
PDF
4MB |
Offizielle URL: https://ieeexplore.ieee.org/document/8486155
Kurzfassung
This study presents a classification framework for the urban Local Climate Zones (LCZs) based on a Residual Convolutional Neural Network (ResNet) architecture. In order to make full use of the temporal and spectral information contained in modern Earth observation data, multi-seasonal Sentinel-2 images are exploited. After training the ResNet, independent predictions are made from the multi-seasonal images. Subsequently, the seasonal predictions are fused in a decision fusion step based on majority voting. A systematical experiment is carried out in a large-scale study area located in the center of Europe. A significant accuracy improvement can be achieved by applying majority voting on multi-seasonal predictions. Based on the results, the main challenges and possible solutions of urban LCZ classification are further discussed, providing guidance for large-scale urban LCZ mapping.
elib-URL des Eintrags: | https://elib.dlr.de/120077/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Urban Local Climate Zone Classification with a Residual Convolutional Neural Network and Multi-Seasonal Sentinel-2 images | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2018 | ||||||||||||||||||||
Erschienen in: | 10th IAPR Workshop on Pattern Recognition in Remote Sensing | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
DOI: | 10.1109/PRRS.2018.8486155 | ||||||||||||||||||||
Seitenbereich: | Seiten 1-5 | ||||||||||||||||||||
Verlag: | IEEE Xplore | ||||||||||||||||||||
ISSN: | 2377-0198 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Urban Local Climate Zone, LCZ, Residual Convolutional Neural Network, CNN, R-CNN, Sentinel-2 | ||||||||||||||||||||
Veranstaltungstitel: | 10th IAPR Workshop on Pattern Recognition in Remote Sensing | ||||||||||||||||||||
Veranstaltungsort: | Peking, China | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 19 August 2018 | ||||||||||||||||||||
Veranstaltungsende: | 20 August 2018 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Fernerkundung u. Geoforschung | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
Hinterlegt von: | Hoffmann, Eike Jens | ||||||||||||||||||||
Hinterlegt am: | 23 Okt 2018 15:27 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:24 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags