Kang, Jian und Wang, Yuanyuan und Zhu, Xiao Xiang (2018) Low rank modeling-based multipass InSAR technique. In: Proceedings of the European Conference on Synthetic Aperture Radar, EUSAR, Seiten 1-6. EUSAR 2018, 2018-06-04 - 2018-06-07, Aachen, Germany.
PDF
- Nur DLR-intern zugänglich
1MB |
Offizielle URL: http://conference.vde.com/eusar/2018/Pages/default.aspx
Kurzfassung
During the last few decades, multipass InSAR techniques have been developed for the retrieval of long term geophysical parameters, e.g. linear deformation rates, over large areas. Conventional method such as Persistent Scatter Interferometry (PSI) usually requires a fairly large SAR image stack (usually in the order of tens), in order to achieve reliable estimates of the parameters. However, in case of limited number of SAR images, e.g. less than 10, not only will the efficiency of the estimator decrease to an unacceptable level, the estimates will also suffer from large bias because of the asymptotic optimality of many typical estimators used in multipass InSAR, such as the periodogram used in PSI. In this paper, a novel multipass InSAR technique based on low rank modeling of complex-valued InSAR phase stacks is introduced. By combining this technique with PSI, we demonstrate that the proposed framework can improve the accuracy of geophysical parameters estimated via PSI by a factor of ten to thirty in typical settings, especially with a limited number of SAR images for the reconstruction.
elib-URL des Eintrags: | https://elib.dlr.de/120031/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Low rank modeling-based multipass InSAR technique | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | Juni 2018 | ||||||||||||||||
Erschienen in: | Proceedings of the European Conference on Synthetic Aperture Radar, EUSAR | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
Seitenbereich: | Seiten 1-6 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | low rank, tensor, robust estimation, multipass, multibaseline, InSAR, SAR | ||||||||||||||||
Veranstaltungstitel: | EUSAR 2018 | ||||||||||||||||
Veranstaltungsort: | Aachen, Germany | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 4 Juni 2018 | ||||||||||||||||
Veranstaltungsende: | 7 Juni 2018 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
Hinterlegt von: | Wang, Yuanyuan | ||||||||||||||||
Hinterlegt am: | 24 Mai 2018 14:01 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:24 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags