elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Experimental and numerical acoustic characterization of ultrasonically absorptive porous materials

Wagner, Alexander und Martinez Schramm, Jan und Dittert, Christian und Sousa, Victor C. B. und Patel, Danish und Scalo, Carlo (2018) Experimental and numerical acoustic characterization of ultrasonically absorptive porous materials. 2018 AIAA AVIATION Forum, 25.-29. Juni 2018, Atlanta, USA.

[img] PDF
10MB

Kurzfassung

The paper addresses the experimental and numerical acoustic characterization of ultrasonically absorptive porous materials with random microstructure such as carbon fiber reinforced carbon ceramic C/C or C/C-SiC. The present study builds upon previous efforts by the authors, improving and extending the established experimental method, complemented by a numerical analysis based on linear acoustics. The latter includes a blind-hole porosity approximation, only accounting for the larger cracks in the C/C with complex acoustic impedance given by the inverse Helmholtz Solver approach, and a highly parametrized homogeneous acoustic Absorber model, accounting for the complete volumetric structure of the porous absorber albeit with lower fidelity. The experimental approach is complemented by high-speed Schlieren visualization and Mach-Zehnder Interferometer measurements to qualitatively and quantitatively assess the interaction between an ultrasonic wave packet and a porous surface. It is found that neglecting the smaller pores and only accounting for the surface porosity, as done in the blind-hole porosity approximation, leads to the underestimation of the acoustic energy absorption coefficient. Phase shifts were found to be experimentally assessable, but remain to be corroborated by a numerical analysis. The comparisons carried out in this paper will pave the way for accurate determination of impedance boundary conditions to be applied in direct numerical simulations of hypersonic transition delay over C/C. The main emphasis of the paper is to assess the potential and the limitations of the experimental methods and the comparison of the experimental results to the numerically obtained absorption characteristics.

elib-URL des Eintrags:https://elib.dlr.de/120018/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Experimental and numerical acoustic characterization of ultrasonically absorptive porous materials
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Wagner, AlexanderDLRhttps://orcid.org/0000-0002-9700-1522NICHT SPEZIFIZIERT
Martinez Schramm, JanDLRNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Dittert, ChristianDLRNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Sousa, Victor C. B.vsousa (at) purdue.eduNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Patel, Danishpatel472 (at) purdue.eduNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Scalo, Carloscalo (at) purdue.eduNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:25 Juni 2018
Referierte Publikation:Nein
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:ultrasonically absorptive porous materials, acoustic characterization, HEG, CC, CC-SiC
Veranstaltungstitel:2018 AIAA AVIATION Forum
Veranstaltungsort:Atlanta, USA
Veranstaltungsart:internationale Konferenz
Veranstaltungsdatum:25.-29. Juni 2018
Veranstalter :AIAA
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Raumtransport
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R RP - Raumtransport
DLR - Teilgebiet (Projekt, Vorhaben):R - Wiederverwendbare Raumfahrtsysteme (alt)
Standort: Göttingen , Stuttgart
Institute & Einrichtungen:Institut für Aerodynamik und Strömungstechnik > Raumfahrzeuge, GO
Institut für Bauweisen und Strukturtechnologie > Raumfahrt - System - Integration
Hinterlegt von: Wagner, Alexander
Hinterlegt am:06 Jul 2018 10:17
Letzte Änderung:31 Jul 2019 20:17

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.