Martin del Campo Becerra, Gustavo and Reigber, Andreas and Nannini, Matteo (2018) Feature Enhanced SAR Tomography Reconstruction Through Adaptive Nonparametric Array Processing. In: International Geoscience and Remote Sensing Symposium (IGARSS). International Geoscience and Remote Sensing Symposium (IGARSS), 2018-07-22 - 2018-07-27, Valencia, Spain. doi: 10.1109/IGARSS.2018.8518667.
Full text not available from this repository.
Abstract
Synthetic aperture radar (SAR) tomography (TomoSAR) employs array signal processing techniques, in order to estimate the location of the vertical structures that compose the backscattering field, in the direction perpendicular to the line-of-sight (PLOS). Due to the limited number of tracks for practical TomoSAR sensing scenarios, it becomes challenging to accurately estimate the source parameters. Additionally, irregular sampling and non-uniform acquisition constellations introduce artifacts and increase ambiguity. The usage of super-resolved parametric methods and compressed sensing (CS) based approaches, improve the vertical resolution and mitigate the effect of sidelobes. However, parametric approaches have the main drawback related to the assumption that the scene is composed by a known finite number of point-type backscattering sources. Also, the CS-based techniques regularly imply a considerable computational burden. Overcoming the disadvantages of the above mentioned TomoSAR-adapted methods, this paper presents a novel non-parametric iterative approach for feature enhanced SAR tomography, in the context of maximum likelihood (ML) estimation theory. The feature enhancing capabilities of the proposed technique are corroborated via processing L-band airborne TomoSAR data of the German Aerospace Center (DLR), acquired by the F-SAR system over the forested test site of Froschham, Germany, in 2017.
Item URL in elib: | https://elib.dlr.de/119667/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Lecture) | ||||||||||||||||
Title: | Feature Enhanced SAR Tomography Reconstruction Through Adaptive Nonparametric Array Processing | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | July 2018 | ||||||||||||||||
Journal or Publication Title: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | No | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||
DOI: | 10.1109/IGARSS.2018.8518667 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | Maximum likelihood (ML), power spectrum pattern (PSP), spectral analysis (SA), synthetic aperture radar (SAR) tomography (TomoSAR). | ||||||||||||||||
Event Title: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||
Event Location: | Valencia, Spain | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Dates: | 2018-07-22 - 2018-07-27 | ||||||||||||||||
Organizer: | IEEE Geoscience and Remote Sensing Society (GRSS) | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - Aircraft SAR | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Microwaves and Radar Institute > SAR Technology | ||||||||||||||||
Deposited By: | Martin del Campo Becerra, Gustavo | ||||||||||||||||
Deposited On: | 16 Apr 2018 08:47 | ||||||||||||||||
Last Modified: | 25 Jul 2023 11:47 |
Repository Staff Only: item control page