elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Investigation of Flame Structure and Soot Formation in a Single Sector Model Combustor Using Experiments and Numerical Simulations Based on the Large Eddy Simulation/Conditional Moment Closure Approach

Giusti, Andrea and Mastorakos, Epaminondas and Hassa, Christoph and Heinze, Johannes and Magens, Eggert and Zedda, Marco (2018) Investigation of Flame Structure and Soot Formation in a Single Sector Model Combustor Using Experiments and Numerical Simulations Based on the Large Eddy Simulation/Conditional Moment Closure Approach. Journal of Engineering for Gas Turbines and Power, 140, 061506-1. American Society of Mechanical Engineers (ASME). DOI: 10.1115/1.4038025 ISSN 0742-4795

Full text not available from this repository.

Official URL: http://gasturbinespower.asmedigitalcollection.asme.org/journal.aspx

Abstract

In this work, a single sector lean burn model combustor operating in pilot only mode has been investigated using both experiments and computations with the main objective of analyzing the flame structure and soot formation at conditions relevant to aero-engine applications. Numerical simulations were performed using the large eddy simulation (LES) approach and the conditional moment closure (CMC) combustion model with detailed chemistry and a two-equation model for soot. The CMC model is based on the time-resolved solution of the local flame structure and allows to directly take into account the phenomena associated to molecular mixing and turbulent transport, which are of great importance for the prediction of emissions. The rig investigated in this work, called big optical single sector rig, allows to test real scale lean burn injectors. Experiments, performed at elevated pressure and temperature, corresponding to engine conditions at part load, include planar laser-induced fluorescence of OH (OH-PLIF) and phase Doppler anemometry (PDA) and have been complemented with new laser-induced incandescence (LII) measurements for soot location. The wide range of measurements available allows a comprehensive analysis of the primary combustion region and can be exploited to further assess and validate the LES/CMC approach to capture the flame behavior at engine conditions. It is shown that the LES/CMC approach is able to predict the main characteristics of the flame with a good agreement with the experiment in terms of flame shape, spray characteristics and soot location. Finite-rate chemistry effects appear to be very important in the region close to the injection location leading to the lift-off of the flame. Low levels of soot are observed immediately downstream of the injector exit, where a high amount of vaporized fuel is still present. Further downstream, the fuel vapor disappears quite quickly and an extended region characterized by the presence of pyrolysis products and soot precursors is observed. The strong production of soot precursors together with high soot surface growth rates lead to high values of soot volume fraction in locations consistent with the experiment. Soot oxidation is also very important in the downstream region resulting in a decrease of the soot level at the combustor exit. The results show a very promising capability of the LES/CMC approach to capture the main characteristics of the flame, soot formation, and location at engine relevant conditions. More advanced soot models will be considered in future work in order to improve the quantitative prediction of the soot level.

Item URL in elib:https://elib.dlr.de/119536/
Document Type:Article
Title:Investigation of Flame Structure and Soot Formation in a Single Sector Model Combustor Using Experiments and Numerical Simulations Based on the Large Eddy Simulation/Conditional Moment Closure Approach
Authors:
AuthorsInstitution or Email of AuthorsAuthors ORCID iD
Giusti, AndreaUniversity of CambridgeUNSPECIFIED
Mastorakos, EpaminondasUniversity CambridgeUNSPECIFIED
Hassa, ChristophChristoph.Hassa (at) dlr.deUNSPECIFIED
Heinze, JohannesJohannes.Heinze (at) dlr.deUNSPECIFIED
Magens, EggertEggert.Magens (at) dlr.deUNSPECIFIED
Zedda, MarcoRolls-Royce plc, Derby, UKUNSPECIFIED
Date:June 2018
Journal or Publication Title:Journal of Engineering for Gas Turbines and Power
Refereed publication:Yes
Open Access:No
Gold Open Access:No
In SCOPUS:Yes
In ISI Web of Science:Yes
Volume:140
DOI :10.1115/1.4038025
Page Range:061506-1
Editors:
EditorsEmail
Wisler, Daviddavewisler@mac.com
Publisher:American Society of Mechanical Engineers (ASME)
ISSN:0742-4795
Status:Published
Keywords:Soot, Combustor, Simulation, Experiment
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Aeronautics
HGF - Program Themes:propulsion systems
DLR - Research area:Aeronautics
DLR - Program:L ER - Engine Research
DLR - Research theme (Project):L - Combustion Chamber Technologies, L - Virtual Engine and Validation methods
Location: Köln-Porz
Institutes and Institutions:Institute of Propulsion Technology > Combustor
Institute of Propulsion Technology > Engine Measurement Systems
Deposited By: Hassa, Dr.-Ing. Christoph
Deposited On:10 Apr 2018 15:23
Last Modified:10 Apr 2018 15:23

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Copyright © 2008-2017 German Aerospace Center (DLR). All rights reserved.