elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Investigation of Flame Structure and Soot Formation in a Single Sector Model Combustor Using Experiments and Numerical Simulations Based on the Large Eddy Simulation/Conditional Moment Closure Approach

Giusti, Andrea und Mastorakos, Epaminondas und Hassa, Christoph und Heinze, Johannes und Magens, Eggert und Zedda, Marco (2018) Investigation of Flame Structure and Soot Formation in a Single Sector Model Combustor Using Experiments and Numerical Simulations Based on the Large Eddy Simulation/Conditional Moment Closure Approach. Journal of Engineering for Gas Turbines and Power, 140, 061506-1. American Society of Mechanical Engineers (ASME). doi: 10.1115/1.4038025. ISSN 0742-4795.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: http://gasturbinespower.asmedigitalcollection.asme.org/journal.aspx

Kurzfassung

In this work, a single sector lean burn model combustor operating in pilot only mode has been investigated using both experiments and computations with the main objective of analyzing the flame structure and soot formation at conditions relevant to aero-engine applications. Numerical simulations were performed using the large eddy simulation (LES) approach and the conditional moment closure (CMC) combustion model with detailed chemistry and a two-equation model for soot. The CMC model is based on the time-resolved solution of the local flame structure and allows to directly take into account the phenomena associated to molecular mixing and turbulent transport, which are of great importance for the prediction of emissions. The rig investigated in this work, called big optical single sector rig, allows to test real scale lean burn injectors. Experiments, performed at elevated pressure and temperature, corresponding to engine conditions at part load, include planar laser-induced fluorescence of OH (OH-PLIF) and phase Doppler anemometry (PDA) and have been complemented with new laser-induced incandescence (LII) measurements for soot location. The wide range of measurements available allows a comprehensive analysis of the primary combustion region and can be exploited to further assess and validate the LES/CMC approach to capture the flame behavior at engine conditions. It is shown that the LES/CMC approach is able to predict the main characteristics of the flame with a good agreement with the experiment in terms of flame shape, spray characteristics and soot location. Finite-rate chemistry effects appear to be very important in the region close to the injection location leading to the lift-off of the flame. Low levels of soot are observed immediately downstream of the injector exit, where a high amount of vaporized fuel is still present. Further downstream, the fuel vapor disappears quite quickly and an extended region characterized by the presence of pyrolysis products and soot precursors is observed. The strong production of soot precursors together with high soot surface growth rates lead to high values of soot volume fraction in locations consistent with the experiment. Soot oxidation is also very important in the downstream region resulting in a decrease of the soot level at the combustor exit. The results show a very promising capability of the LES/CMC approach to capture the main characteristics of the flame, soot formation, and location at engine relevant conditions. More advanced soot models will be considered in future work in order to improve the quantitative prediction of the soot level.

elib-URL des Eintrags:https://elib.dlr.de/119536/
Dokumentart:Zeitschriftenbeitrag
Titel:Investigation of Flame Structure and Soot Formation in a Single Sector Model Combustor Using Experiments and Numerical Simulations Based on the Large Eddy Simulation/Conditional Moment Closure Approach
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Giusti, AndreaUniversity of CambridgeNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Mastorakos, EpaminondasUniversity CambridgeNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Hassa, ChristophChristoph.Hassa (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Heinze, JohannesJohannes.Heinze (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Magens, EggertEggert.Magens (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Zedda, MarcoRolls-Royce plc, Derby, UKNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:Juni 2018
Erschienen in:Journal of Engineering for Gas Turbines and Power
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:140
DOI:10.1115/1.4038025
Seitenbereich:061506-1
Herausgeber:
HerausgeberInstitution und/oder E-Mail-Adresse der HerausgeberHerausgeber-ORCID-iDORCID Put Code
Wisler, Daviddavewisler (at) mac.comNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Verlag:American Society of Mechanical Engineers (ASME)
ISSN:0742-4795
Status:veröffentlicht
Stichwörter:Soot, Combustor, Simulation, Experiment
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Antriebssysteme
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L ER - Engine Research
DLR - Teilgebiet (Projekt, Vorhaben):L - Brennkammertechnologien (alt), L - Virtuelles Triebwerk und Validierungsmethoden (alt)
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Antriebstechnik > Brennkammer
Institut für Antriebstechnik > Triebwerksmesstechnik
Hinterlegt von: Hassa, Dr.-Ing. Christoph
Hinterlegt am:10 Apr 2018 15:23
Letzte Änderung:10 Apr 2018 15:23

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.