elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Ground filtering and DTM generation from DSM data using probabilistic voting and segmentation

Özcan, Abdullah H. und Unsalan, Cem und Reinartz, Peter (2018) Ground filtering and DTM generation from DSM data using probabilistic voting and segmentation. International Journal of Remote Sensing, 39 (9), Seiten 2860-2883. Taylor & Francis. doi: 10.1080/01431161.2018.1434327. ISSN 0143-1161.

[img] PDF
4MB

Offizielle URL: http://dx.doi.org/10.1080/01431161.2018.1434327

Kurzfassung

Automated digital terrain model (DTM) generation from remotely sensed data has gained wide application areas due to increased sensor resolution. In this study, a novel ground filtering and segmentation method is proposed for digital surface model (DSM) data. The proposed method starts with extracting DSM feature points. These are used in a probabilistic framework to generate a non-ground object probability map in spatial domain. Modes of this map are used as seed points in a novel segmentation method based on morphological operations. This leads to ground filtering and DTM generation. The method is tested on three different data sets. Two of these originate from light detection and ranging (lidar) sensors, where resulting kappa coefficient (κ) range mostly higher than 95% for differently structured urban areas. Also, the visual appearance of the generated DTM exhibits obvious improvements over all other investigated methods. The third data set is a DSM obtained from WorldView-2 stereo image pairs. Also here, we compare our results with three different methods in the literature. Although the DSM quality is much lower, more than 85% of κ can be reached by the proposed method, showing its superiority over other methods. Overall experimental results show that the proposed method can be used reliably for DTM generation. The results also indicate that the method has prominent advantages in comparison to established methodologies in terms of robustness in handling urban areas of different properties. Moreover, there are only few parameters to adjust in the proposed method, and these are independent of the object size in DSM data.

elib-URL des Eintrags:https://elib.dlr.de/119397/
Dokumentart:Zeitschriftenbeitrag
Titel:Ground filtering and DTM generation from DSM data using probabilistic voting and segmentation
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Özcan, Abdullah H.TÜBITAK BILGEM, TurkeyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Unsalan, Cemunsalan (at) yeditepe.edu.trNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Reinartz, Peterpeter.reinartz (at) dlr.dehttps://orcid.org/0000-0002-8122-1475NICHT SPEZIFIZIERT
Datum:31 Januar 2018
Erschienen in:International Journal of Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:39
DOI:10.1080/01431161.2018.1434327
Seitenbereich:Seiten 2860-2883
Verlag:Taylor & Francis
ISSN:0143-1161
Status:veröffentlicht
Stichwörter:DTM; DSM; lidar; ground filtering; probabilistic voting; region growing; segmentation
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Verkehrsmanagement (alt)
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V VM - Verkehrsmanagement
DLR - Teilgebiet (Projekt, Vorhaben):V - Vabene++ (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Hinterlegt von: Zielske, Mandy
Hinterlegt am:22 Mär 2018 20:26
Letzte Änderung:31 Jul 2019 20:16

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.