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ABSTRACT
Automated digital terrain model (DTM) generation from remotely
sensed data has gained wide application areas due to increased
sensor resolution. In this study, a novel ground filtering and
segmentation method is proposed for digital surface model
(DSM) data. The proposed method starts with extracting DSM
feature points. These are used in a probabilistic framework to
generate a non-ground object probability map in spatial domain.
Modes of this map are used as seed points in a novel segmenta-
tion method based on morphological operations. This leads to
ground filtering and DTM generation. The method is tested on
three different data sets. Two of these originate from light detec-
tion and ranging (lidar) sensors, where resulting kappa coefficient
(κ) range mostly higher than 95% for differently structured urban
areas. Also, the visual appearance of the generated DTM exhibits
obvious improvements over all other investigated methods. The
third data set is a DSM obtained from WorldView-2 stereo image
pairs. Also here, we compare our results with three different
methods in the literature. Although the DSM quality is much
lower, more than 85% of κ can be reached by the proposed
method, showing its superiority over other methods. Overall
experimental results show that the proposed method can be
used reliably for DTM generation. The results also indicate that
the method has prominent advantages in comparison to estab-
lished methodologies in terms of robustness in handling urban
areas of different properties. Moreover, there are only few para-
meters to adjust in the proposed method, and these are indepen-
dent of the object size in DSM data.
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1. Introduction

Digital surface model (DSM) data, obtained from light detection and ranging (lidar)
sensors and stereo image pairs, have been used for a few decades in remote-sensing
applications. One important task in these applications is digital terrain model (DTM)
generation which is achieved by finding correct ground points in DSM followed by
interpolation. Therefore, most algorithms in the literature try to filter non-ground points
first. The complexity of the environment and increasing spatial resolution of DSM data
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make it difficult to filter non-ground points. This becomes a major challenge in urban
areas where there are dense and large buildings.

Researchers proposed several non-ground point filtering methods due to the impor-
tance of the problem. Among these, slope-based algorithms try to find adaptive slope
threshold values for ground–non-ground point separation (Vosselman 2000; Sithole
2001; Sithole and Vosselman 2004; Shan and Aparajithan 2005; Wang and Tseng
2010). Most of these methods assume that the terrain is smooth and continuous with
a large height difference between neighbouring points on ground and non-ground
objects. Therefore, the performance of these methods often decreases through wrongly
filtering hilly regions and large buildings. Susaki (2012) proposed a slope-based mor-
phological filtering algorithm to overcome these problems. Although the obtained
results are promising, filtering large buildings is still a problem.

Kraus and Pfeifer (1997; 1998; 2001) offered interpolation-based algorithms in which
they generate a surface from lidar points and iteratively update it with appropriate
selection of ground points. Axelsson (2000) proposed using adaptive triangulated irre-
gular network (TIN). Zhang and Lin (2013) improved this method by updating progres-
sive TIN densification. They used segmentation-based filtering and obtained improved
results compared to Axelsson’s method. Mongus and Zalik (2012) proposed a parameter-
free method. Chen et al. (2013) improved this method further. They proposed a multi-
resolution hierarchical classification algorithm based on lidar point residuals from the
interpolated raster surface. Mongus and Zalik (2014) proposed a multi-scale decomposi-
tion method which uses connected operators. The advantage of this method is its
computational efficiency. Hu et al. (2014) proposed an adaptive surface filtering method
using regularization. They obtained very good results in detecting objects for standard
airborne lidar test data. Recently, Özcan and Ünsalan (2017) used two-dimensional
empirical mode decomposition (EMD) with morphological modifications in an adaptive
manner for filtering non-ground object points. They achieved the best performance in
kappa coefficient (κ) for ISPRS ground filtering data set (Sithole and Vosselman 2004).
However, there are still problems in this method while filtering large and flat-top non-
ground object points. Vega et al. (2012) also proposed a method for terrain modelling,
especially for forested regions. They benefit from salient points in their operation.
Although having a similar approach, this method differs from the proposed one in
terms of the region growing step.

Morphology-based methods are mostly used in ground filtering due to their simpli-
city and ease of implementation. However, finding the correct structuring element size is
a problem in these methods. While a small structuring element is needed for filtering
points on vegetation, tree, and cars, a large structuring element should be used for
filtering points on buildings. This causes a contradiction in operation. Zhang et al. (2003)
used a progressive morphological filtering method to overcome this contradiction by
iteratively increasing the structuring element size as well as the elevation threshold in
filtering. Pingel, Clarke, and McBride (2013) improved this method further by linearly
increasing the structuring element size and applying image inpainting to generate the
DTM. They used simple slope thresholding on normalized DSM for non-ground object
extraction. Mongus, Lukac, and Zalik (2014) proposed a method which uses differential
morphological profiles to form a top-hat scale-space. They used this method to extract
buildings from lidar data. Li (2013) proposed a morphological filtering algorithm based
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on multi-gradient analysis. Hui et al. (2016) proposed a multilevel kriging interpolation
algorithm with a combination of progressive morphological filtering method.

Filtering non-ground objects in urban areas with morphological operations is still a
problem due to large and flat-top buildings. One of the main reasons for this difficulty
originates from selecting an appropriate structuring element size and elevation thresh-
old value. If the large building is on a sloped terrain, then excessive filtering of ground
points is inevitable. Recently, Chen, Xu, and Gao (2016) proposed an image processing
approach for segmenting ground points in airborne lidar data. Then, they used ground
segments to generate DTM. Although this method works fairly well for filtering large
buildings, it is not tested on dense and sloped urban areas. Finally, Meng, Currit, and
Zhao (2010) offer a comprehensive review on ground filtering. The reader can consult it
to grasp the literature on this problem.

In this study, we propose a ground filtering and DTM generation method, espe-
cially for urban areas in which large buildings exist. Most other methods try to
extract as many ground points as possible for DTM generation. Unlike them, we
extract all non-ground object points first. Then, we use the remaining points for DTM
generation. The main hypothesis in the proposed method is that a non-ground
object is higher than its neighbours. Hence, we propose using region growing for
segmenting non-ground objects. To do so, we propose a novel method based on
morphological operations. Seed points for region growing are determined by prob-
abilistic voting on DSM data. The method is tested on three DSM data sets obtained
from different sensors. The first and second data sets are obtained from lidar sensors.
LiDAR-derived DSMs’ spatial resolutions are 0.5 m and 0.09 m, respectively. The third
DSM data are obtained from WorldView stereo image pairs each with 0.5 m resolu-
tion. The proposed method is also compared with the existing methods in the
literature.

2. Probabilistic voting on DSM data

The first step in the proposed method is finding seed points on non-ground objects. This
is done by a probabilistic voting approach. However, this method requires preprocessing
of DSM data first.

2.1. Preprocessing

The proposed method works on DSM data. Therefore, if the lidar point cloud is
available, it should be represented in gridded form. To do so, nearest neighbour
interpolation can be used to generate the raster DSM from the lidar point cloud.

First, lidar returns are most often used in urban environments (Meng, Currit, and Zhao
2010). We also applied the same strategy in the present work. Unfortunately, raw lidar
measurements may become noisy due to sensor characteristics and other measurement
errors. Hence, data at hand may have high-frequency components. To overcome this
problem, morphological opening by a 3 m disk-shaped structuring element is applied on
DSM as Is ¼ I � B, where I is the DSM, � is the morphological opening operation, and B
is the disk-shaped structuring element. We picked the morphological element size as
3 m based on the characteristics of data at hand such that this operation removes some
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small objects and outliers in DSM. We then apply elevation thresholding to the result to
extract small objects as

Os ¼ I � Isð Þ � th (1)

where Os is the binary class of small objects and th is the elevation threshold value; ‘O,’
‘I,’ and ‘B’ are all sets. Stereo image-based DSM data also contain outliers and small
objects. Therefore, the same preprocessing steps should be applied to them as well.

The proposed method will be explained on the Utah-5 DSM test data throughout the
manuscript. This test sample (with spatial resolution of 0.5 m) is obtained from the NSF
Open Topography website (http://opentopo.sdsc.edu/gridsphere/gridsphere?cid=geonli
dar). Here, only the first pulse return is available in lidar data. The original Utah-5 test
data are given in Figure 1(a). As can be seen in this figure, the test data contain buildings
and various vegetation on a sloped terrain. More detail on it can be found in Section 4.
Also, a subpart of the Utah-5 test data is picked as shown in Figure 1(b) to explain steps
of the proposed method better.

When the preprocessing step is applied on the subpart of the Utah-5 test data, the
obtained result is as shown in Figure 2(a). As can be seen in this figure, the test data are
smoothed by preprocessing. Small object detection results from this test data are also
given in Figure 2(b). These will be used in the following sections.

2.2. Extracting non-ground seed points

Segmentation is applied to detect non-ground objects in DSM data in the proposed
method. The first step in this operation is extracting seed points. We utilized DSM data
to detect buildings with a probabilistic voting method (Özcan, Ünsalan, and Reinartz
2013) in a previous study. We extend this method further to detect seed points from
DMS data in this study. Let’s explain this method in detail.

Figure 1. The original Utah-5 DSM test data and its subpart to be used throughout the manuscript.
The spatial resolution of DSM is 0.5 m. (a) DSM data. (b) Subpart of DSM, represented by a red box in
part (a).
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An object can be represented by its edges in DSM data. Therefore, Canny edge
detection is applied to the DSM (Canny 1986). To note here, there are also other edge
detectors in the literature. However, the Canny edge detector has better edge detection
performance in remote-sensing images. Therefore, we used it in this study.

Edge detection result for the preprocessed subpart of the Utah-5 test data is as
shown in Figure 3(a). As can be seen in this figure, object edge points are extracted.
However, there are also some extra edges extracted because of elevation changes in the
sloped terrain.

Edges are strong indicators of existence of a non-ground object. Therefore, each edge
point will vote for a possible non-ground object centre location. This is done as follows.
Objects are assumed to be higher than their surrounding. Therefore, an edge point,
ðxe; yeÞ, is assumed to be at the centre of a w � w window in DSM, Is. The rationale for
selecting the window size will be explained in detail in Section 4.2. Each edge point
votes for the highest elevation point in the window. To have a valid vote, the maximum
and minimum elevation difference in the window should be greater than the elevation

Figure 2. Demonstration of the preprocessing and small object detection steps on the subpart of
the Utah-5 test data. (a) Preprocessing result. (b) Small object detection results by setting th=1 m.

Figure 3. Demonstration of the probabilistic object location detection method on the subpart of the
Utah-5 test data. Edges and modes of the estimated pdf are given in 2D image; estimated pdf is
given in 3D for better visualization. (a) Edges. (b) Estimated pdf. (c) Modes of the estimated pdf.
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threshold th used in Equation (1). The voting operation can be mathematically described
as follows.

ðxm; ymÞ ¼ argmaxðx;yÞIsðx; yÞ (2)

where ðxm; ymÞ is the highest elevation point. Here

xe � w=2 � x � xe þ w=2
ye � w=2 � y � ye þ w=2

(3)

The highest elevation point in the window indicates only one location for possible non-
ground object centre. This may not be the exact object centre location. Therefore, an
uncertainty factor is introduced by a Gaussian kernel. Hence, we cast a vote at ðxm; ymÞ
which leads to a Gaussian probability density function (pdf) as

pðx; yÞ ¼ 1ffiffiffiffiffiffi
2π

p
σ
exp �ðx � xmÞ2 þ ðy � ymÞ2

2σ2

 !
(4)

where σ is the width of the kernel. In this study, σ and w are kept constant. Hence, they
do not change for each edge point.
Naturally, there are several edge points extracted from DSM data. Using the same
procedure for each edge point, the estimated pdf for the object centre location
becomes

pvðx; yÞ ¼ 1
C

Xi¼1

N

1ffiffiffiffiffiffi
2π

p
σ
exp �ðx � xmðiÞÞ2 þ ðy � ymðiÞÞ2

2σ2

 !
(5)

where C is the normalizing constant, N is the number of votes, and ðxmðiÞ; ymðiÞÞ is the
ith vote centre. To note here, N will be less than or equal to the total number of edge
points since the elevation threshold constraint should be satisfied for an edge point to
vote.

The generated pdf for the Utah-5 test data is given in Figure 3(b). As can be seen in
this figure, pvðx; yÞ is multimodal. Modes (location of local maxima) of pvðx; yÞ will give
possible non-ground object location information. Modes of the Utah-5 test data are as
shown in Figure 3(c) in which each mode is represented by a triangle marker. Even
though there is only one non-ground object (building) in Figure 3(c), there are multiple
modes on it. This is because of the structure of the building. There are also modes in the
sloped parts of the terrain which do not correspond to an object. All extracted modes
will be used as seed points in the segmentation step to be explained next.

3. Segmentation of non-ground objects

The segmentation relies on two steps: a morphological-based segmentation followed by
a region growing algorithm. Let’s start with explaining the initial segmentation step.

3.1. Initial segmentation

The first step in DSM segmentation is based on the modes of pvðx; yÞ. These will be used
in extracting reference elevation values. Let’s assume that M modes are extracted. They
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can be represented as ðxpðjÞ; ypðjÞÞ for j ¼ 1; � � �;M. An initial segment can be obtained
with connected pixels to each ðxpðjÞ; ypðjÞÞ in an iterative manner as

Xk ¼ ðXk�1 � BÞ \ S (6)

where

S ¼
Xj¼1

M

IsðxpðjÞ; ypðjÞÞ � Isðx; yÞ
�� �� < th (7)

where ‘S’ and ‘X’ are both sets, X0 ¼ SðxpðjÞ; ypðjÞÞ is the initial value, k represents the
iteration number, � denotes the morphological dilation operation, and B is the 3� 3
structuring element. If Xk ¼ Xk�1, then the iteration stops.

Initial segmentation result on the subpart of Utah-5 test data is as shown in Figure 4. Two
cases are provided here. In the first case, the mode is on a building. The initial segmentation
result for this case is given in Figure 4(a) as white dots. As can be seen here, the initial
segment partly overlaps the building. In the second case, the mode is on a terrain with
slope. The initial segmentation result for this case is given in Figure 4(b) as white dots. As can
be seen here, the initial segment spreads on the ground with the same elevation value.

4. Morphological region growing

The initial segmentation result is used in morphological region growing to extract possible
non-ground objects. The proposed method is algorithmically explained in Listing 1. This
method can be summarized as follows. The outer boundary of the initial segment is added
to the segmentation result at each iteration. This is done by checking the elevation value of
eachpixel in the outer boundary. To append apixel to the segment, its height shouldbewithin
the given upper and lower tolerance values. Pixels satisfying the tolerance constraint are
appended to the growing segment. This operation is done iteratively. The iteration endswhen
there is no pixel to append or the maximum iteration number is reached. Hence, the possible
instability issue is avoided. Theunderlying assumptionhere is that the segment tobeextracted

Figure 4. Initial segmentation results on non-ground and ground. White dots indicate the initial
segmentation results. (a) Non-ground segment. (b) Ground segment.
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should have a flat or nearly flat shape and it should be aboveground. The final segmentation
result is obtained if themean elevation height of the grown segment is greater than themean
elevation height of the segments border pixels. Hence, a segment which is grown in a flat
region is rejected. This method is performed for all modes of the voting map. Finally, all
segmentation results are merged.

Algorithm 1 Morphological region growing

BEGIN
ðxi; yiÞ 2 Xk ; points in the initial segmentation

μX ¼ 1
N

PN
i¼1

Isðxi; yiÞ; calculate the mean elevation value

tl, tu, and ts; lower, upper, and final elevation threshold values
Tmax; maximum iteration number
B; 3� 3 structuring element for thickening
⊛; hit or miss transform
⊝; erosion operation
counter ¼ 0; initialize the counter
repeat

Xþ
k ¼ Xk [ ðXk 	 BÞ; thicken the current segment

Xþ
b ¼ Xþ

k � ðXþ
k 
 BÞ; extract the boundary of the thickened segment

Δμþk ¼ μX � Isðxb; ybÞ where ðxb; ybÞ 2 Xþ
b ; calculate the elevation difference for

each boundary pixel
if Δμþk > tu; if any boundary pixel’s elevation value is too low then

Xþ
k ðxb; ybÞ ¼ 0; set the related pixel to zero

end if
if Δμþk < tl ! ; if any boundary pixel’s elevation value is too high then

Xþ
k ðxb; ybÞ ¼ 0; set the related pixel to zero

end if
if Xþ

k ¼ Xk or counter > Tmax then
EXIT = true; stop growing

else
EXIT = false; keep growing
Xk ¼ Xþ

k ; update the initial segment
μX ¼ 1

N

PN
i¼1

Isðxi; yiÞ; update the mean elevation value
counter+ = 1; increase the counter

end if
until EXIT

μb ¼ 1
M

PM
i¼1

Isðxb i; yb iÞ, where ðxb; ybÞ 2 Xþ
b ; calculate outer perimeter mean elevation height

Δμ ¼ μX � μb; calculate elevation height difference of the object and its outer perimeter
if Δμ < ts; if not satisfying being an object then

Xkðxi; yiÞ ¼ 0; delete all pixels
end if
return Xk

END
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The iteration steps of the proposed morphological region growing algorithm on the
initial non-ground segment (in Figure 4(a)) are as shown in Figure 5. In this figure, white
dots indicate the segmentation result at each iteration. Red dots indicate pixels whose
height is lower or higher than the upper and lower threshold values, respectively. As the
region grows at each iteration, the mean height of the segment is updated. Hence, if the
non-ground object is a building and has sloped or flat rooftop, the algorithm can handle
it. As iterations end, the algorithm checks whether the segmentation result belongs to a
non-ground object or not. For the case in Figure 5, the result belongs to a non-ground
object. Therefore, the final segment is accepted. Iteration steps of the proposed region
growing algorithm on the initial ground segment (in Figure 4(b)) are as shown in
Figure 6. For this case, the final segment is rejected.

4.1. Final non-ground object segmentation

The algorithm in Listing 1 is applied on all modes of pvðx; yÞ to segment all non-ground
objects in DSM data. Then, they are merged with the initial small non-ground object
detection result by a logical OR operation (Mano and Ciletti 2007). This step can be
formulated as

Figure 5. Running form of the morphological region growing algorithm on the initial building
segment. White dots indicate the segmentation result. Red dots are pixels whose height is lower or
upper than the upper and lower threshold values, respectively. (a) Iteration 1. (b) Iteration 4. (c)
Iteration 7. (d) Iteration 10.
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O ¼ Os [
Xj¼1

M

XkðjÞ; (8)

where O is the final non-ground object segmentation result, Os is the small non-ground
object detection result obtained in the preprocessing step, and XkðjÞ is the segmentation
result for the jth mode of pvðx; yÞ.

Non-ground object segmentation result for the Utah-5 test data is given in Figure 7.
Here, small object detection result is given in Figure 7(a). Segmentation via morpholo-
gical region growing is given in Figure 7(b). Their combination is given in Figure 7(c). As
can be seen in this figure, most non-ground objects are segmented in this test data.
Quantitative results for the Utah-5 test data will be given in Section 4.

4.2. DTM generation

Non-ground pixels are extracted by segmentation in the previous section. The remaining
points are taken as ground points. Hence, DTM can be generated from these. Here, we
use image inpainting to generate DTM as suggested by Pingel, Clarke, and McBride
(2013) and as in Özcan and Ünsalan (2017). In image inpainting, missing pixels of the
image are interpolated with existing neighbour pixels (Bertalmio et al. 2000). Similarly,

Figure 6. Running form of the morphological region growing method on a ground segment. White
dots indicate the segmentation result. Red dots are pixels whose height is lower or upper than the
upper and lower threshold values, respectively. (a) Iteration 1. (b) Iteration 4. (c) Iteration 7. (d)
Iteration 10.
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we label the non-ground pixels in the DSM as missing and fill them with Derrico’s image
inpainting method to obtain the DTM. The MATLAB code of the used method can be
found at http://www.mathworks.com/matlabcentral/fileexchange/4551-inpaint-nans. To
note here, other methods can also be used here such as kriging or natural neighbours.
The true DTM and generated DTM for Utah-5 are given in Figure 8. As can be seen in this
figure, the generated and true DTMs are similar.

5. Experiments

We evaluate the performance of the proposed method in this section. To do so, we tested it
on three different data sets. The first data set is obtained from the publicly available NSF
Open Topography website which provides LiDAR-based DSM. Challenging regions (to
observe the limits of the proposed method) are selected from the web site and the test
set is formed accordingly. The second data set is obtained from ISPRS which is used as a
benchmark (Sithole and Vosselman 2004). The third data set is composed of DSM generated
from stereo WorldView image pairs. Industrial and residential regions are selected here.

Figure 7. Non-ground object segmentation results for the Utah-5 DSM test data. Threshold is
selected as th ¼ 1. (a) Small non-ground objects. (b) Morphological region growing result. (c)
Non-ground object segmentation results for the Utah-5 DSM test data. Threshold is selected as
th ¼ 1.

Figure 8. DTM for the Utah-5 DSM test data. (a) True DTM. (b) Generated DTM.
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Next, we will summarize the performance evaluation criteria used in reporting experi-
mental results. Then, we will focus on parameter settings and sensitivity analysis. Finally,
we will provide the experimental results on three different data sets.

5.1. Performance evaluation criteria

The performance of the proposed method is provided in terms of non-ground object
detection results for all data sets. In this study, several evaluation metrics are used.
Specifically, κ, total error (TE), type-I error (TI), and type-II error (TII) are used for the first
and third data sets (Cohen 1968; Sithole and Vosselman 2004). Type I error is equal to
the number of ground pixels mistakenly classified as non-ground divided by the true
number of ground pixels. Type II error is equal to the number of non-ground pixels
mistakenly classified as ground divided by the true number of non-ground pixels. Total
error is the number of all false classifications divided by the total number of pixels.
Finally, κ is the statistical measure that is more robust than simple per cent agreement. It
is calculated using proportional agreement between ground and non-ground pixels and
the expected agreement by chance. While performing error calculations, all pixels are
taken into account. Hence, none of the pixels are left behind.

Completeness (CP), correctness (CR), and F1 score metrics are also used in the first
and second data sets. Hence, the results can be compared with other methods using the
first data set (Rutzinger, Rottensteiner, and Pfeifer 2009). These metrics are defined as
follows.

CP ¼ ðTPÞ
ðTPÞ þ ðFNÞ (9)

CR ¼ ðTPÞ
ðTPÞ þ ðFPÞ (10)

F1 ¼ 2ðTPÞ
2ðTPÞ þ ðFPÞ þ ðFNÞ (11)

where true-positive (TP), false-positive (FP), and false-negative (FN) values are used in
calculations.

5.2. Parameter settings and sensitivity analysis

Through the voting and segmentation steps, it is assumed that a non-ground object is at
least 1 m above the ground. Therefore, the elevation threshold in Equation (1) is
selected as th ¼ 1 m. This value may be increased or decreased with respect to the
height of small objects to be detected. When a non-ground object is larger compared to
the window size in Equation (3), votes may not accumulate at one location on the
object, but may result in more than one accumulation point. This may cause multiple
peaks in the estimated pdf. On the other hand, if the window size is selected too large,
then some objects may not be detected. As a compromise, the voting window size in
Equation (3) is selected as w ¼ 3 m. To note here, the minimum size of objects also
depends on the DSM resolution. The width of the Gaussian kernel in Equation (5) also
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directly affects the number of peaks in the estimated pdf as with the voting window size.
Therefore, it is also set as σ ¼ 3.

The iteration number in Listing 1 is set as Tmax ¼ 10. Increasing Tmax leads to longer
processing time and does not significantly change the segmentation result. Elevation thresh-
old values in Listing 1 are set as tl ¼ �5m, tu ¼ 1m, and ts ¼ 1m. The tl value is set such that
the segmentation step can continue with a higher object part. Here, the negative value only
indicates the difference between the height values in the present and nearby object parts.
Let’s assume that an object is partly surrounded by a taller object where the height difference
is lower than 5m. If region growing starts on the lower object, it will continue growing on the
taller object. If tl < � 5 m, then segmentation stops on the lower object.

To analyse the sensitivity of the proposed method on parameter changes, we performed
two experiments on the NSFOpen Topography lidar data set. First, we fixed all the parameters
in the algorithm and changed the threshold th from 0.4 to 2.0 m. We provide the obtained
results in Table 1. Here, we provide all performance criteria with respect to th. We also provide
the total time (in seconds) needed to process all test data at hand. As can be seen in this table,
performanceof theproposedmethod is fairly insensitive to the changes in th. Besides, the total
computation time does not change significantly with respect to change in th.

We next fixed all the parameters and only changed thewindow sizew from3 to 19m.We
provided the obtained results in Table 2. As can be seen in this table, performance of the
proposed method is also fairly insensitive to a change in window size w. However, the total
computation time decreases with respect to increasing window size.

5.3. NSF Open Topography lidar data set

The first data set is obtained from the publicly available NSF Open Topography website.
The reader can download the lidar point cloud data by defining an area of interest from

Table 1. Sensitivity analysis of the proposed method with respect to change in th value.
th κ TE TI TII CP CR F1 Time (s)

0.4 95.64 1.94 2.78 0.34 99.82 97.22 98.50 101.36
0.6 95.48 2.01 2.93 0.24 99.88 97.07 98.45 101.31
0.8 95.31 2.08 3.06 0.17 99.91 96.94 98.40 100.23
1.0 95.09 2.18 3.22 0.13 99.93 96.78 98.33 101.58
1.2 94.73 2.33 3.45 0.10 99.94 96.55 98.22 100.11
1.4 94.30 2.52 3.73 0.09 99.95 96.27 98.08 99.14
1.6 94.06 2.62 3.87 0.08 99.95 96.13 98.00 98.91
1.8 93.18 2.99 4.41 0.06 99.97 95.59 97.73 98.31
2.0 92.47 3.29 4.84 0.05 99.97 95.16 97.51 99.64

Table 2. Sensitivity analysis of the proposed method with respect to change in w value.
w κ TE TI TII CP CR F1 Time (s)

3 93.81 2.72 4.02 0.10 99.95 95.98 97.92 104.67
5 95.09 2.18 3.22 0.13 99.93 96.78 98.33 101.58
7 95.48 2.01 2.97 0.18 99.91 97.03 98.45 95.56
9 95.31 2.10 2.84 0.78 99.64 97.16 98.38 95.63
11 95.34 2.07 2.68 1.07 99.51 97.32 98.40 91.95
13 95.38 2.03 2.49 1.36 99.40 97.51 98.45 92.08
15 95.59 1.93 2.26 1.62 99.32 97.74 98.52 91.11
17 95.26 2.07 2.15 2.31 98.99 97.85 98.42 88.80
19 95.30 2.04 1.87 2.80 98.76 98.13 98.44 89.61
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this website. The reader can also download DTM of the selected area from the men-
tioned website. The point density for the NSF Open Topography lidar data set is 9.14
points/m2. More information on this data set can be found in http://opentopo.sdsc.edu/
datasetMetadata?otCollectionID=OT.072017.26912.1.

Nine test samples are picked from the NSF Open Topography website. These are
labelled Utah 1–9 throughout the study. The selected subarea shows residential char-
acteristics with buildings. DSM data for all test samples are given in Figure 9. The grid
resolution for all test samples is 0.5 m. The DTM for this data set is also available on the
website. Due to the lack of manually generated ground truth for test samples, the
downloaded DTM is used to form the ground truth. Therefore, provided results in this
section will be relative to the downloaded DTM.

Test samples in the first data set are grouped into three parts according to the terrain
type, object size, and type as follows. Test samples Utah 1–3 have flat terrain; buildings
here are mostly in one piece. Building layout in these test samples changes from small to
large. There are trees on the side of roads and buildings. On these samples, the
proposed method is tested for segmenting objects with varying size located on a flat
terrain. In Utah-1, there is one large building with an irregular shape. In Utah-2, there is
one large building with flat roof. In Utah-3, buildings mostly have equal size with four of
them having different size. Utah 4–6 test data have sloped terrain with regular-sized
separate buildings. In Utah-4, buildings are surrounded by trees. In Utah-5 and Utah-6,

Figure 9. DSM data for the first data set. First row: Utah 1–3; second row: Utah 4–6; third row: Utah
7–9.
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buildings have irregular shape with trees nearby. On these samples, the proposed
method is tested for segmenting objects on a sloped terrain. In Utah 7–9, buildings
are connected with varying size and some buildings exhibit irregular shape. In Utah-7
and Utah-8, the terrain is mostly flat. In Utah-9, the terrain is partly sloped. On these
samples, the proposed method is tested for segmenting large and connected objects on
a flat or sloped terrain.

The proposed method is compared with three other methods in the literature using
the NSF data set. The first method is introduced by Pingel, Clarke, and McBride (2013).
This method is based on iterative morphological filtering where it generates DTM and
then segments non-ground objects on the normalized DSM. The software for this
method is called simple morphological filter (SMRF) which can be obtained from
http://tpingel.org/code/smrf/smrf.html. Within this software, default parameter values
are used as suggested in Pingel, Clarke, and McBride (2013). The second method is
proposed by Mongus, Lukac, and Zalik (2014). This method is also based on morpholo-
gical operations. It uses a top-hat scale-space transform using differential morphological
profiles on point’s residuals from the approximated surface. Surface and regional fea-
tures are used for building detection. The software for this method is called gLiDAR and
can be obtained from http://gemma.uni-mb.si/gLiDAR/about.html. Within this software,
default parameter values are used as suggested in Mongus, Lukac, and Zalik (2014). The
third ground filtering method is based on EMD (Özcan and Ünsalan 2017). This method
applies two-dimensional EMD with morphological modifications in an adaptive manner
for filtering non-ground object pixels.

For the assessment of these methods, ground-truth object locations are formed as
follows. First, the ground-truth DTM is subtracted from DSM and the normalized DSM is
obtained. Then, pixels above 1 m (in the normalized DSM) are considered as belonging
to a non-ground object. Remaining pixels are taken as ground. Since SMRF, gLiDAR, and
EMD filtering methods generate DTM, the same procedure is applied to segment non-
ground objects.

Generated and true DTMs for Utah 1-2-7-8-9 are given in Figure 10, respectively. As
can be seen in this figure, all other three methods in the literature had problems in
filtering large buildings. Detailed non-ground object segmentation results are given in
Figure 11. The problem in detecting large buildings is clearly seen in this figure. All three
methods in the literature have misdetections on large objects. However, the proposed
method only has a misdetection problem on objects which are connected to nearby
higher objects. This is because of the segmentation algorithm. At the end of segmenta-
tion, it is assumed that the object is taller than its immediate neighbours. Hence, it is
tested whether the elevation height difference of the segmented object and its peri-
meter is above a threshold. This assumption may fail when buildings are connected side
by side and one is taller than the other. Part of the largest building is lower than its
surrounding for all directions in the Utah-1 test data. Hence, it could not be detected.
The reason for this result can be explained as follows. The missing part did not get
sufficient votes at the probabilistic voting step. Hence, no segmentation has started
there. The SMRF and EMD methods also had a problem in detecting the same part of the
building. gLiDAR did not detect most parts of the same building. There are also similar
results on the Utah 7-8-9 test samples. Here, some buildings which are connected to a
taller building could not be detected by the proposed method.
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The object segmentation performance of the proposed and other three methods is
tabulated in Table 3. As can be seen in this table, the proposed method performs
slightly worse than SMRF and EMD and better than gLiDAR in terms of all metrics on
the Utah-1 test data. The proposed method performs better than the other three
methods on the Utah-2 test data. Here, the other three methods have large TI error
because of the misdetection of the largest building. All three methods have similar
results on the Utah-3 test data. For the Utah 4–6 test data, obtained result by the
proposed method is similar to other methods even though the terrain is sloped and
the proposed method is not based on generated DTM. The proposed method has
misdetections on the Utah-7 test data. Therefore, it has a high TI error. The proposed
method has the best K, TE, TI, and TII values on the Utah 8–9 test data. These results
can be summarized as follows. If buildings are not large in the test data (as in Utah-3),
all four methods have good results. If there are large buildings in the test data (as in
Utah-1-2-7-8-9), other methods mostly fail where the proposed method works prop-
erly. On a sloped terrain, SMRF has the best score with the proposed and gLiDAR
methods having similar values. The proposed method outperforms other methods on
segmenting connected and large buildings.

Results in Table 3 can be summarized as follows. The proposed method has the best
mean κ with 95.09% where SMRF, gLiDAR, and EMD mean κ are 89.36%, 89.48%, and
87.10%, respectively. The proposed method has the best mean TE, TI, and TII values with
2.18%, 3.22%, and 0.13%, respectively. It also has the lowest standard deviation of all
metrics. This shows the robustness of the proposed method on such a diverse test set.

Figure 10. Generated DTM results for the Utah-1, Utah-2, Utah-7, Utah-8, and Utah-9 test data. The
first column corresponds to DSM data. The second to last columns correspond to true DTM,
proposed method, SMRF, gLiDAR, and EMD-filtering results, respectively.
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The CP, CR, and F1 scores are also provided for the first data set in Table 4. Here,
pixel-wise building detection results are given. The mean CP and CR scores are 99.93%
and 96.78%, respectively. The mean F1 score, which is harmonic mean of completeness
and correctness, is 98.33%. These results indicate that the proposed method works fairly
well on the first data set.

5.4. ISPRS Vaihingen data set

The second data set (provided by ISPRS) consists of semantically labelled lidar data for
Vaihingen, Germany. The point density for the ISPRS Vaihingen data set is 4 points/m2.
The subarea shows residential and urban characteristics with dense buildings. More
information on this data set can be found in http://www2.isprs.org/commissions/
comm3/wg4/detection-and-reconstruction.html#VaihigenDataDescr.

Figure 11. Detailed object segmentation results for the Utah 1-2-7-8-9 test data. Columns from left
to right correspond to the proposed method, SMRF, gLiDAR, and EMD-filtering results, respectively.
True non-ground object segments are labelled in green, true ground detections are labelled in grey,
undetected non-ground segments are labelled in blue, and false non-ground segments are labelled
in red in these figures.

2876 A. H. ÖZCAN ET AL.

http://www2.isprs.org/commissions/comm3/wg4/detection-and-reconstruction.html#VaihigenDataDescr
http://www2.isprs.org/commissions/comm3/wg4/detection-and-reconstruction.html#VaihigenDataDescr


Ta
bl
e
3.

O
bj
ec
t
se
gm

en
ta
tio

n
pe
rf
or
m
an
ce

of
th
e
pr
op

os
ed

an
d
ot
he
r
th
re
e
m
et
ho

ds
in

pe
rc
en
ta
ge
s
on

th
e
N
SF

O
pe
n
To
po

gr
ap
hy

lid
ar

da
ta

se
t.

Pr
op

os
ed

m
et
ho

d
SM

RF
gL
iD
AR

EM
D

Te
st

κ
TE

TI
TI
I

κ
TE

TI
TI
I

κ
TE

TI
TI
I

κ
TE

TI
TI
I

U
ta
h-
1

97
.3
4

1.
08

1.
48

0.
02

97
.8
6

0.
87

1.
19

0.
03

91
.8
7

3.
22

4.
32

0.
03

97
.8
3

0.
88

1.
21

0.
05

U
ta
h-
2

98
.5
9

0.
65

1.
01

0.
03

83
.2
7

7.
45

10
.5
2

0.
07

83
.3
9

7.
40

10
.4
4

0.
14

83
.0
6

7.
55

10
.6
1

0.
18

U
ta
h-
3

97
.5
3

1.
14

1.
76

0.
03

99
.3
6

0.
30

0.
45

0.
03

98
.8
3

0.
54

0.
82

0.
05

99
.4
8

0.
24

0.
34

0.
07

U
ta
h-
4

97
.1
2

1.
43

2.
41

0.
28

97
.9
7

1.
01

1.
60

0.
32

97
.0
9

1.
45

2.
55

0.
13

97
.8
9

1.
05

1.
04

1.
06

U
ta
h-
5

97
.2
8

0.
96

1.
14

0.
31

98
.3
5

0.
58

0.
66

0.
30

96
.7
8

1.
13

1.
40

0.
18

98
.0
2

0.
70

0.
53

1.
28

U
ta
h-
6

94
.5
7

2.
43

3.
45

0.
33

96
.5
9

1.
54

2.
01

0.
60

94
.1
8

2.
60

3.
70

0.
32

97
.0
6

1.
33

1.
48

1.
06

U
ta
h-
7

87
.4
0

6.
08

9.
65

0.
09

83
.4
9

7.
94

12
.1
4

0.
33

87
.4
9

6.
05

9.
52

0.
24

77
.3
8

10
.8
1

15
.5
8

1.
26

U
ta
h-
8

97
.2
1

0.
97

1.
24

0.
02

74
.0
9

8.
07

9.
48

0.
06

82
.7
9

5.
60

6.
71

0.
39

69
.2
4

9.
50

10
.5
3

3.
42

U
ta
h-
9

88
.7
8

4.
85

6.
81

0.
07

73
.2
1

11
.0
7

14
.2
4

0.
46

72
.8
7

11
.2
1

14
.3
1

0.
88

63
.9
3

14
.5
7

17
.7
2

2.
10

M
ea
n

95
.0
9

2.
18

3.
22

0.
13

89
.3
6

4.
31

5.
81

0.
25

89
.4
8

4.
36

5.
98

0.
26

87
.1
0

5.
18

6.
56

1.
16

M
in

87
.4
0

0.
65

1.
01

0.
02

73
.2
1

0.
30

0.
45

0.
03

72
.8
7

0.
54

0.
82

0.
03

63
.9
3

0.
24

0.
34

0.
05

M
ax

98
.5
9

6.
08

9.
65

0.
33

99
.3
6

11
.0
7

14
.2
4

0.
60

98
.8
3

11
.2
1

14
.3
1

0.
88

99
.4
8

14
.5
7

17
.7
2

3.
42

St
an
da
rd

de
vi
at
io
n

4.
12

1.
96

3.
03

0.
13

10
.8
7

4.
23

5.
65

0.
21

8.
57

3.
51

4.
61

0.
26

14
.0
1

5.
46

7.
06

1.
09

INTERNATIONAL JOURNAL OF REMOTE SENSING 2877



Trees and vegetation are removed by using an NDVI mask from object detection
results in the second data set. Therefore, it is assumed that the remaining object
segmentation results represent buildings. Hence, the performance of the proposed
method was evaluated on building detection results of the ISPRS reference data. To
be compatible with other methods in the literature using this data set, the CP, CR, and
F1 score results are given in Table 5. Here, pixel-wise building detection results are
provided. As can be seen in this table, mean CP and CR scores are close where mean CP
is 90.33% and mean CR is 88.92%. The mean F1 score is 89.57%. The reader can check
the most recent comparison results from the mentioned ISPRS website (http://www2.
isprs.org/commissions/comm3/wg4/2d-sem-label-vaihingen.html). To note here, most of
the other methods use supervised approaches on the ISPRS data. Although the pro-
posed method has an unsupervised approach, it still provides good results.

Building detection results on three test samples from the second data set are given in
Figure 12. As can be seen in this figure, most buildings are detected. In cases where a
building is partly surrounded by taller buildings or trees, some misdetections occur.
Such a case can be seen in the last row of Figure 12, where a building is surrounded by
trees at the bottom centre of the test data. Hence, it could not be detected.

5.5. Worldview stereo image-based DSM data set

The third data set is composed of DSM generated from WorldView-2 stereo image pairs.
The WorldView-2 image pair has been acquired over Istanbul, Turkey, on 7 July 2012.
The convergence (stereo) angle is 15º, which equals a base to height ratio of approxi-
mately 2:1. The pixel resolution is 0.5 m, allowing to derive a quite dense regular point
cloud of disparities. The WorldView-2 DSM (pixel spacing 0.5 m) has been generated
using a robust dense stereo matching algorithm based on semi-global matching using a

Table 4. Pixel-wise building detection performance in percentages on the NSF
Open Topography lidar data set.
Test CP CR F1

Utah-1 99.99 98.52 99.25
Utah-2 99.98 98.99 99.48
Utah-3 99.98 98.24 99.10
Utah-4 99.76 97.59 98.66
Utah-5 99.91 98.86 99.38
Utah-6 99.84 96.55 98.17
Utah-7 99.94 90.35 94.90
Utah-8 99.99 98.76 99.37
Utah-9 99.97 93.19 96.46

Table 5. Pixel-wise building detection performance in percentages on the ISPRS
Vaihingen data set.
Test CP CR F1

Vaihingen-1 93.63 85.78 89.53
Vaihingen-2 88.30 89.40 88.80
Vaihingen-3 89.41 87.72 88.55
Vaihingen-4 89.10 91.00 90.00
Vaihingen-5 91.22 90.69 90.95
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combination of census and mutual information as cost functions developed by the
institution of one of the authors (dAngelo and Reinartz 2011; Arefi and Reinartz 2013).
Interpolation has been performed using the delta surface fill methodology, preserving
also height jumps (dAngelo and Reinartz 2012).

In the third test set, sharpness of the DSM is slightly worse compared to the first data
set. This affects building boundaries such that they have smoother transitions towards
the ground. Therefore, this data set shows how the proposed method works under these
constraints.

In the first column of Figure 13, four panchromatic test images where the first two are
residential and the last two are industrial regions in Istanbul, Turkey are provided. In the
second column of the same figure, DSM data of the same locations are provided. In
residential regions, buildings have regular size, but closely located buildings look like

Figure 12. Building detection results on the Vaihingen 1-3-5 of ISPRS data set. Columns from left to
right correspond to the 2D image, DSM, and building detection results, respectively. In the last
column, true non-ground object segments are labelled in green, true ground detections are labelled
in grey, undetected non-ground segments are labelled in blue, and false non-ground segments are
labelled in red.
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connected due to the nature of the DSM data. In industrial regions, some buildings have
very large footprints. In the third column, generated DTMs are given. In the last column,
object detection results are given. Due to the lack of ground-truth information for object
locations, they are extracted manually.

Quantitative results of the WorldView stereo image-based DSM data set are given in
Table 6. Unfortunately, the other three methods could not be used on this data set since
they need lidar points as input. The proposed method performs well in residential
regions where the κ for the first two data set is over 85%. In industrial regions, κ
decreases. False detections cause large TII error in these test data. There are some
embankments where one side of them looks like an object and the other side looks

Figure 13. Filtering results on the WorldView stereo image-based DSM data set. Columns from left
to right correspond to panchromatic image, DSM, generated DTM, and object filtering results,
respectively. True non-ground object segments are labelled in green, true ground detections are
labelled in grey, undetected non-ground segments are labelled in blue, and false non-ground
segments are labelled in red in these figures.

Table 6. Object segmentation performance of the proposed method in percen-
tages on the WorldView stereo image-based DSM data set.
Test κ TE TI TII

Residential-1 86.71 4.64 5.26 2.24
Residential-2 86.28 5.27 6.44 1.49
Industrial-1 83.44 6.45 6.12 7.40
Industrial-2 79.25 9.18 7.71 12.24
Mean 83.92 6.39 6.38 5.84
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like belonging to the terrain in the Industrial-1 test data. Thus, it misguides the seg-
mentation process and causes false detection (in red at the upper right corner of the
image). There is a bridge in the Industrial-2 test data which is correctly segmented as an
object. However, the terrain which is connected to the bridge was also segmented as an
object, which caused a large TII error. In the upper right of the same test data, part of a
large building could not be segmented. Even though the building has a flat roof, it has
an irregular distribution of height data on its roof. Hence, the segmentation method did
not work properly.

6. Conclusions

In this study, a novel ground filtering and DTM generation method is proposed. The
key idea of the method is based on the assumption that non-ground objects are
higher than their surrounding. The method consists of probabilistic voting and novel
morphological region growing-based segmentation steps. Obtained segments are
used for DTM generation. We tested the proposed method on two different lidar
and one stereo image-based DSM data sets. Experimental results indicate that the
proposed method works fairly well on both flat and sloped terrain. Furthermore, it
performs better in filtering large buildings compared to other methods in the litera-
ture. Besides, the proposed method is insensitive to object size to be filtered. This is
the most advantageous point of the proposed method compared to those available
in the literature. The proposed method has some misdetections due to the structure
of complex buildings. This will be the focus of future work. There is also one possible
extension for the proposed method in this study. Instead of the nearest neighbour
interpolation, DSM computation can be performed by selecting the maximum eleva-
tion per grid cell and further interpolating the empty cells. This may improve the
performance of the proposed method.
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