Abdi, Ghasem und Samadzadegan, Farhad und Reinartz, Peter (2018) Deep learning decision fusion for the classification of urban remote sensing data. Journal of Applied Remote Sensing, 12 (1), Seiten 1-19. Society of Photo-optical Instrumentation Engineers (SPIE). doi: 10.1117/1.JRS.12.016038. ISSN 1931-3195.
PDF
8MB |
Kurzfassung
Multisensor data fusion is one of the most common and popular remote sensing data classification topics by considering a robust and complete description about the objects of interest. Furthermore, deep feature extraction has recently attracted significant interest and has become a hot research topic in the geoscience and remote sensing research community. A deep learning decision fusion approach is presented to perform multisensor urban remote sensing data classification. After deep features are extracted by utilizing joint spectral–spatial information, a soft-decision made classifier is applied to train high-level feature representations and to fine-tune the deep learning framework. Next, a decision-level fusion classifies objects of interest by the joint use of sensors. Finally, a context-aware object-based postprocessing is used to enhance the classification results. A series of comparative experiments are conducted on the widely used dataset of 2014 IEEE GRSS data fusion contest. The obtained results illustrate the considerable advantages of the proposed deep learning decision fusion over the traditional classifiers.
elib-URL des Eintrags: | https://elib.dlr.de/119394/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | Deep learning decision fusion for the classification of urban remote sensing data | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 13 März 2018 | ||||||||||||||||
Erschienen in: | Journal of Applied Remote Sensing | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 12 | ||||||||||||||||
DOI: | 10.1117/1.JRS.12.016038 | ||||||||||||||||
Seitenbereich: | Seiten 1-19 | ||||||||||||||||
Verlag: | Society of Photo-optical Instrumentation Engineers (SPIE) | ||||||||||||||||
ISSN: | 1931-3195 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | deep learning, multisensor data Fusion, classification | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||
HGF - Programmthema: | Verkehrsmanagement (alt) | ||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||
DLR - Forschungsgebiet: | V VM - Verkehrsmanagement | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - Vabene++ (alt) | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||
Hinterlegt von: | Zielske, Mandy | ||||||||||||||||
Hinterlegt am: | 22 Mär 2018 20:23 | ||||||||||||||||
Letzte Änderung: | 31 Jul 2019 20:16 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags