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Abstract. Multisensor data fusion is one of the most common and popular remote sensing data
classification topics by considering a robust and complete description about the objects of inter-
est. Furthermore, deep feature extraction has recently attracted significant interest and has
become a hot research topic in the geoscience and remote sensing research community. A
deep learning decision fusion approach is presented to perform multisensor urban remote sensing
data classification. After deep features are extracted by utilizing joint spectral–spatial informa-
tion, a soft-decision made classifier is applied to train high-level feature representations and to
fine-tune the deep learning framework. Next, a decision-level fusion classifies objects of interest
by the joint use of sensors. Finally, a context-aware object-based postprocessing is used to
enhance the classification results. A series of comparative experiments are conducted on the
widely used dataset of 2014 IEEE GRSS data fusion contest. The obtained results illustrate
the considerable advantages of the proposed deep learning decision fusion over the traditional
classifiers. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.12
.016038]
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1 Introduction

With the recent tremendous advances in remote sensing imaging systems, there has been a sig-
nificant increase in making use of well-defined multiple sensors and sources via the geoscience
and remote sensing research community to achieve a robust and complete description about
objects of interest.1–5 In this respect, image analysis and data fusion play a significant role
in applications of pansharpening,6,7 classification,8–10 change detection,11,12 large-scale process-
ing,13,14 multiple resolutions,15,16 domain adaption,17–19 interactive systems,20,21 and signal-level
fusion with different meanings and properties.22 In the above-mentioned applications, classifi-
cation of remote sensing images from urban area is one of the most challenging topics, which are
still ongoing and have potential in further development due to a wide variety of man-made
objects and scene complexity so that urban area classification has attracted considerable interest
and has turned into a hot research topic in the geoscience and remote sensing research
community.5,23 Within this context, fusion of aerial visible and thermal hyperspectral data
has been received increasing interest over the past few years.5,23–28 Aerial visual data (with con-
siderable spatial descriptors) play a significant role in the urban land cover classification and
demonstrate important spectral features in the visible spectrum.24 Furthermore, the advances
in thermal imaging technology have made it possible to be collected in multiple continuous
spectral channels with significantly improved joint spectral–spatial resolutions for identification
of various physical materials regardless of illumination conditions, leading thereby to enhanced
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classification performance.24,29,30 The development of spectral-based classification of thermal
remote sensing data has focused on spectral absorption descriptors of silicate minerals, the
main parts of the terrestrial surface, and man-made construction objects. The silicon–oxygen
bonds of the silicate minerals cannot present distinct spectral descriptors in the visible-to-short-
wave infrared range,31 whereas its stretching vibrations display considerable spectral features in
the longwave infrared range.32 In this case, man-made objects emit a greater extent of polarized
infrared radiation than naturally derived background materials33,34 because they have relatively
smooth surface features versus most naturally occurring surfaces. Within this context, the emis-
sivity can parametrically suffice if surface irregularities are large, relative to the emitted radi-
ation’s wave range, whereas the surface may be more specular and an observable induced
polarization arises in the emitted thermal radiation if surface irregularities are small versus
the emission wave range.35

Classification of urban visual and thermal hyperspectral data is a new subject in the geo-
science and remote sensing research community and limited research have been conducted
in this field of study. Liao et al.24 presented the outcomes of 2014 IEEE GRSS data fusion con-
test, a challenging multiresolution and multisensor image analysis and data fusion research com-
munity problem. The winning article of the classification section focused on hierarchical
classification strategy to combine visual and thermal hyperspectral data. In this context, the
land cover classes are successively identified by a binary support vector machine (SVM) clas-
sifier on the concatenated feature descriptors. In addition, the obtained pixel-based land cover
classification map is refined by majority voting, adaptive mean shift segmentation and multiple
semantic rules. The winners of the paper contest provided a development of the multiresolution
and multisensor image analysis and data fusion. In this respect, visual data are applied in a
guided filtering scheme to improve thermal image’s spatial resolution, and then the land
cover classification map is identified using an SVM classifier on a supervised graph-based fea-
ture-level fusion. After the contest, the data are publicly available still as a challenging image
analysis opportunity for further development. Lu et al.5 presented a decision-level classifier
fusion to identify a thematic land cover classification map of the 2014 IEEE GRSS data fusion
contest dataset. A semisupervised local discriminant analysis extracts distinct thermal feature
descriptors that are fed into an SVM classifier, followed by feature representations of joint spec-
tral–textural information to perform land cover classification of aerial visible data. In addition, an
object-based decision-level fusion is proposed to integrate the above-mentioned classifiers and to
enhance the classification performance. Li et al.23 suggested a multilevel land cover classification
approach to integrate the 2014 IEEE GRSS data fusion contest dataset. In this case, road pixels
are first identified by combination of thermal imagery classification outcomes and visual data
segmentation map, and then the rest of classes are classified by utilizing joint spectral–spatial
information of visual data. Moreover, an object-based decision-level fusion is applied to enhance
the classification performance. Eslami and Mohammadzadeh25 applied in-scene atmospheric
compensation to thermal hyperspectral data, and then sequential parametric projection pursuit
dimensionality reduction is employed to overcome finite training set problem with the high
dimensionality of hyperspectral data. Furthermore, an SVM classifier (on a visual and the
above-mentioned thermal feature-level fusion) is employed to identify the land cover classes,
and eventually an object rule-based postprocessing refines the obtained pixel-based land cover
classification map. Samadzadegan et al.27 proposed a cuckoo search optimization algorithm with
mixed binary-continuous coding to determine a suitable subset of feature representations of joint
spectral–spatial information and SVM hyperparameters simultaneously. Eslami and
Mohammadzadeh26 presented a hierarchical classification strategy to integrate visual spec-
tral–spatial and thermal spectral–textural feature descriptors. In this context, the urban land
cover mapping is successively identified using a binary SVM classifier on the above-mentioned
feature descriptors. In addition, the obtained pixel-based land cover classification map is
improved by an object rule-based postprocessing. Abdi et al.28 presented a decision-level clas-
sifier fusion strategy to combine the 2014 IEEE GRSS data fusion contest dataset. In this con-
text, road pixels are first classified by thermal spectral information, and then the rest of classes
are successively identified by the joint use of sensors via Dempster–Shafer classifier fusion.
Furthermore, an object-based postprocessing (OBP) is used to enhance the classification per-
formance. In the above-described papers, many ways were presented to classify the 2014
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IEEE GRSS data fusion contest dataset; they provided fascinating novelty in development and
practical classification applications. Within this context, two common dimensionality reduction
strategies were widely applied to overcome finite training set problems with the high dimen-
sionality of hyperspectral data. The dimensionality reduction by transform employs a transfor-
mation function to obtain some optimum through data compression, whereas the band selection
of dimensionality reduction exploits an appropriate subset of spectral bands to reduce input
space by a definite optimization criterion.36 Moreover, spectral–spatial remote sensing data clas-
sification were extensively investigated to enhance the classification performance by considering
homogeneous areas as a set of neighboring pixels whose spectral information are mainly belong-
ing to one class.37–39 Most existing techniques defined shallow handcrafted features or transform-
based filters of the input data that are not robust enough to make a deal with classification chal-
lenges of remote sensing data.40 Additionally, deep learning frameworks have recently enhanced
the classification performance by automatic extraction of extremely powerful deep features and
therefore has led to a hot research topic in the geoscience and remote sensing research
community;41–53 i.e., the traditional shallow architectures are replaced by novel deep frameworks
motivated by the human brain architectural model.54 From the deep learning point of view, deep
belief networks train one layer using restricted Boltzmann machines in an unsupervised
manner.55,56 Autoencoder and its variants learn the intermediate layers of representation in
an unsupervised way.57,58 Unlike autoencoders, the sparse coding methods exploit sparse rep-
resentations of the input space via training a dictionary.59 Furthermore, convolutional neural
networks, the most representative supervised deep learning framework, admit the deep archi-
tecture to train invariant and abstract features and to convert the original data into representations
that can notably enhance the classification performance.60 The deep learning methods are
explained in great details in the machine learning research literature.61,62

Deep learning turns out to be a significant developing trend in the geoscience and remote
sensing research community and remains extremely challenging due to its novelty and limited
research up to now. In this paper, we propose a deep learning decision fusion for the classifi-
cation of urban remote sensing data and address the advantages of the presented method over
a large number of traditional classifiers.

2 Proposed Method

In this article, we present a deep learning decision fusion for the classification of urban remote
sensing data that contain deep feature extraction, logistic regression classifier, decision-level
classifier fusion, and context-aware OBP steps. A deep architecture is designed to progressively
learn invariant and abstract feature representations of the input data comprised of spectral, spa-
tial, or joint utilization of spectral–spatial features, and then a logistic regression classifier is
applied to train high-level features at the top layer and to optimize the deep learning framework.
In the next step, an enhanced classification map is estimated by integrating multiple classifier
outcomes, followed by a context-aware OBP refining the obtained pixel-based land cover
classification map. The general structure of the presented method is shown in Fig. 1.

2.1 Deep Feature Extraction

The joint spectral–spatial classification framework is constructed by the concatenated spectral–
spatial feature descriptors. In this case, the raw spectral data are first used to take advantage of the
available contiguous spectral bands for classification applications. Second, the spatial feature
descriptors are made by a local window considering that a set of neighboring pixels for
many cases belong to one class. Finally, a hybrid set of joint spectral–spatial information is
made by stacking the above-mentioned feature descriptors.

2.1.1 Stacked sparse autoencoder

A shallow sparse autoencoder exhibits a specific type of neural network consisting input, hidden
and reconstruction layers that are used to progressively learn invariant and abstract features in an
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unsupervised manner;63,64 i.e., an encoder function transfers the input-to-hidden layer, and then
a decoder function reconstructs an approximation of the input data from hidden representa-
tion by

EQ-TARGET;temp:intralink-;e001;116;428z ¼ fðWzxþ bzÞ; (1)

EQ-TARGET;temp:intralink-;e002;116;395y ¼ fðWyzþ byÞ; (2)

where Wz and Wy define the input-to-hidden and the hidden-to-output weights, whereas bz and
by indicate the bias of the hidden and output units. In addition, f is the logistic sigmoid function,
defining nonlinear mapping function of the encoder and decoder transitions. The optimal param-
eters are commonly estimated by minimizing the reconstruction error with sparsity constraint
and weight decay terms as

EQ-TARGET;temp:intralink-;e003;116;306Jcost ¼
1

M

XM
i¼1

�
1

2
kyi − xik22

�
þ λ

2

X
l

X
i

X
j

½WðlÞ
i;j �2 þ η

XS
j¼1

KLðrkrjÞ; (3)

in the above equation, the initial term defines the reconstruction error of M training samples,43

the second one explains the weight decay term to minimize the over fitting of autoencoder,65 and
the last one is a sparsity penalty term to enforce the average latent unit activation to be close to
the target value.43 Moreover, the minimization strategy of the above-described function can be
iteratively carried out utilizing stochastic gradient descent and back propagation method.66,67

A deep stacked sparse autoencoder (SAE) is developed to progressively train high-level fea-
ture representations of input data by stacking several layers of sparse autoencoders and can be
trained utilizing a greedy layerwise strategy for extra layers.

2.1.2 Convolutional neural network

Convolutional networks present a specific type of neural network containing an input, multiple
hidden, and an output layer that is used to progressively learn invariant and abstract features in
a supervised manner. A typical convolutional network employs a convolutional layer with sub-
sequent nonlinear operations and a pooling layer.40 A convolutional layer can be defined as

Fig. 1 Flowchart of the proposed method.
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EQ-TARGET;temp:intralink-;e004;116;735xlj ¼ f

�XM
i¼1

xl−1i � klij þ blj

�
; (4)

where xl−1i defines the i’th feature map of l − 1’th layer, xlj explains the j’th feature map of l’th
layer, and M indicates the number of input feature maps. klij and blj exhibit the trainable param-
eters in the convolutional layer. f represents a function that enhances the nonlinear properties of
the decision function and of the entire network without influencing the convolution layer’s
receptive fields.

The pooling layer is applied to reduce the spatial resolution of the representation, the number
of parameters, and computation time in the network by dividing the input data into a set of
nonoverlapping rectangles and results in the maximum of each subregion.

A deep convolutional neural network (CNN) is designed to progressively train high-level
feature representations of input data by stacking multiple convolutional layers followed by non-
linear mapping function and different pooling layers.

2.2 Logistic Regression Classifier

After deep feature extraction, a logistic regression classifier is augmented above the output fea-
ture descriptors of the highest network’s layer to fine-tune the deep learning architecture by
enforcing gradient descent from the current setting of the parameters to minimize the training
error on the labeling samples. Within this context, softmax regression represents an extended
type of logistic regression that can be utilized for multiclass classification targets, and its out-
come can be defined as a set of conditional probabilities by

EQ-TARGET;temp:intralink-;e005;116;454PðY ¼ ijR;W; bÞ ¼ sðWRþ bÞ ¼ eWiRþbiP
j
eWjRþbj

; (5)

where R indicates a result of the network’s last hidden layer,W and b denote the logistic regres-
sion layer’s weights and biases. The above-described fine-tuning is generally performed by
defining very slight learning rates on the network’s layers.42

2.3 Decision-Level Classifier Fusion

Classifier fusion has been used on several types of data to enhance the performance of individual
classifiers. Within this context, a set of decisions is first conducted, and next synthesized via a
particular classifier fusion strategy; the combined decision commonly demonstrates more pre-
cise, accurate, and certain toward any decisions that construct the ensemble.68–70

2.3.1 Naïve Bayes combination

Naïve Bayes (NB) combination, one of the most efficient classifier fusion strategies, can be
applied to integrate the classifier label outputs. Denote PðsjÞ the probability that classifier
Dj labels x in class sj ∈ Ω the conditional independence can be defined by

EQ-TARGET;temp:intralink-;e006;116;204PðsjωkÞ ¼ Pðs1; s2; : : : ; sLjωkÞ ¼
YL
i¼1

PðsijωkÞ; (6)

where L defines the number of classifiers. The posterior probability required to classify x can be
explained by

EQ-TARGET;temp:intralink-;e007;116;130PðωkjsÞ ¼
PðωkÞPðsjωkÞ

PðsÞ ¼ PðωkÞ
Q

L
i¼1 PðsijωkÞ
PðsÞ ; k ¼ 1; : : : ; c; (7)

where c indicates the number of classes. The denominator does not rely on ωk and can be
disregarded, so the support for class ωk is determined by
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EQ-TARGET;temp:intralink-;e008;116;735μkðxÞ ∝ PðωkÞ
YL
i¼1

PðsijωkÞ: (8)

The maximum result of μ indicates winner label for x instance. More detailed descriptions
about the NB combination method can be found in Ref. 69.

2.3.2 Behavior knowledge space combination

The behavior knowledge space (BKS) combination strategy can efficiently integrate the clas-
sifier labels and extract more accurate outputs for the classification applications. The BKS com-
bination method contains knowledge-modeling and operation steps. In the knowledge-modeling
step, it exploits knowledge from a priori behavior of classifiers and constructs a K-dimensional
BKS, and the operation stage is then conducted for all testing samples and combines individual
classifier label outputs into a final decision by a rule that utilizes the knowledge inside of the unit.
More detailed descriptions about the BKS combination method can be found in Ref. 68.

2.4 Context-Aware Object-Based Postprocessing

The above-mentioned pixel-based land cover classification map always has a large number of
outlier classified pixels caused by the problem of excessive heterogeneity.28 In this case, a multi-
resolution image segmentation method can be employed to split the image data into multiple

Table 1 Context-aware object-based postprocessing rules.

Majority vote Relationships among spatial objects

Road If relative border of road class ≠ 0, then merge it into road object.

If relative border of road class ¼ 0, then merge it into adjacent image object.

Tree If length to width ≤ TLWor area pixels ≤ TPX, then merge it into tree object.

If length to width > TLWor area pixels > TPX, then merge it into vegetation object.

Red roof If length to width ≤ TLW, then merge it into red roof object.

If length to width > TLW and relative border of road class ≠ 0, then merge it into road
object.

If length to width > TLW and relative border of road class = 0, then merge it into adjacent
image object.

Gray roof If length to width ≤ TLW, then merge it into gray roof object.

If length to width > TLW and relative border of road class ≠ 0, then merge it into road
object.

If length to width > TLW and relative border of road class = 0, then merge it into adjacent
image object.

Concrete roof If length to width ≤ TLW, then merge it into concrete roof object.

If length to width > TLW and relative border of road class ≠ 0, then merge it into road
object.

If length to width > TLW and relative border of road class = 0, then merge it into adjacent
image object.

Vegetation Merge it into vegetation object.

Bare soil Merge it into bare soil object.

Land cover If relative border of road class = 1, then merge it into road object.
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spatially nonoverlapping regions. In this context, the multiresolution image segmentation
method takes one pixel and constantly creates larger ones by considering a local homogeneity
criterion between adjacent image objects, and also merging that pair of image objects.71 After
completing multiresolution image segmentation, the final label of each segmented region is
made by majority voting and considering relationships among spatial objects (Table 1).

3 Experiments and Results

To validate the presented deep learning decision fusion for the classification of urban remote
sensing data, a series of comparative experiments are conducted on the widely used dataset of
2014 IEEE GRSS data fusion contest. It enables a challenging multiresolution and multisensor
image analysis and data fusion opportunity; the visual data (Fig. 2) contain a series of color
images associated with different strips, and the thermal hyperspectral image (Fig. 3) was
acquired by the 84 spectral bands Hyper-Cam airborne sensor over Thetford Mines in
Québec, Canada, with 874 × 751 pixels (spatial resolution of 1 m) and comes with a seven-
class labeled ground truth map. In the above-described datasets, the training samples are ran-
domly detached as 100 of each ground truth label, and the rest are used as the testing samples. In
this section, a set of comparative experiments are carried out on the above-mentioned datasets to
quantitatively investigate the significant advantages of the proposed classification frameworks
over the conventional classifiers69 containing decision tree (DT), discriminant analysis (DA),
NB, k-nearest neighbor (KNN), and SVM. In the case of the conventional spectral-based clas-
sification of thermal hyperspectral image, we adopt eigenvalue (EV), hyperspectral signal sub-
space identification by minimum error (HS), and noise-whitened Harsanyi–Farrand–Chang
(NH) techniques36 as intrinsic dimension estimation to be employed by dimensionality reduction
with principle components analysis (PCA).

The first experiment is carried out on the visible imagery of 2014 IEEE GRSS data fusion
contest. To validate the proposed classification frameworks, two quality indices: overall accuracy
(OA) and kappa coefficient are utilized to perform a comprehensive comparison. The quanti-
tative evaluation results achieved by the various classifiers are shown in Table 2. It can be per-
ceived that CNN gains the most accurate classification result (OA/kappa: 89.72/86.30) against
the classic classifiers. Furthermore, the effectiveness of the presented classification techniques is
evaluated via the visual inspection of the classification maps (Fig. 2). The second experiment is
executed on the thermal hyperspectral imagery of 2014 IEEE GRSS data fusion contest. The
implementation procedures are the same as that of the first experiment. As can be noted from
Table 3, CNN obtains the highest classification accuracies (OA/kappa: 75.07/66.58). The clas-
sification maps of the multiple classifiers are shown in Fig. 3. The last experiment is conducted
on a joint use of the above datasets. From the classification results in Tables 4 and 5, and by
observing Fig. 4, it can be concluded that the presented CNN classification architecture provides
again the best performance of classification (OA/kappa: 97.29/96.32).

The quantitative evaluation results obtained by the various classifiers are shown in Fig. 5. In
addition, Fig. 6 summarizes the classification performance of the best classifiers with respect to
the 2014 IEEE GRSS data fusion contest testing data. The overall results explain that the
proposed deep learning frameworks perform better than the traditional classifiers in terms of
metrics used. In this context, CNN provides 3.91/5.32%, 6.65/8.71%, 2.81/3.67%, and 5.52/
7.37% enhancements for visual, thermal, combination, and context-aware OBP data, respec-
tively, in terms of OA/kappa metrics. In contrast, the joint use of imaging systems improves
performance of classification up to 7.57/10.02% and 22.22/29.74% with respect to the visible
and thermal hyperspectral data, respectively. It is clearly obvious that the proposed method tends
to be more robust and attains the highest classification results in terms of the classification qual-
ity index (Fig. 7).

An enormous number of hyperparameters for the above-mentioned classification frameworks
can be automatically evaluated using the well-defined grid search procedure. In this case, Table 6
shows the grid search hyperparameters for the various classifiers.

In this section, we consider the dependencies of the presented deep learning frameworks
applied for the experimental part, execution time analysis, and effect of model depth on
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Fig. 2 Visible imagery, ground truth, and classification maps.

Table 2 The visual data classification accuracies.

No. DT DA NB KNN SVM SAE CNN

1 0.65 0.68 0.60 0.79 0.86 0.90 0.88

2 0.82 0.76 0.57 0.80 0.81 0.85 0.91

3 0.84 0.88 0.48 0.87 0.93 0.90 0.95

4 0.74 0.66 0.01 0.68 0.61 0.74 0.83

5 0.94 0.97 0.98 0.95 0.96 0.84 0.93

6 0.71 0.85 0.58 0.83 0.87 0.78 0.93

7 0.80 0.95 0.88 0.93 0.95 0.93 0.95

OA 0.73 0.77 0.58 0.82 0.86 0.86 0.90

Kappa 0.66 0.70 0.47 0.76 0.81 0.81 0.86

Note: Bold values indicate outlier at the 5% level of significance.
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Table 3 The thermal hyperspectral data classification accuracies.

No.

PCA

EV HS NH EV HS NH EV HS NH EV HS NH EV HS NH SAE CNN

DT DA NB KNN SVM

1 0.73 0.82 0.88 0.80 0.91 0.91 0.71 0.91 0.90 0.69 0.92 0.90 0.70 0.90 0.89 0.93 0.95

2 0.38 0.40 0.29 0.08 0.25 0.40 0.34 0.42 0.42 0.46 0.50 0.42 0.31 0.36 0.37 0.33 0.54

3 0.47 0.40 0.41 0.34 0.48 0.42 0.30 0.56 0.52 0.43 0.55 0.59 0.16 0.60 0.48 0.46 0.54

4 0.13 0.43 0.39 0.27 0.44 0.49 0.35 0.37 0.43 0.18 0.40 0.32 0.51 0.40 0.49 0.47 0.53

5 0.30 0.44 0.46 0.12 0.32 0.34 0.18 0.22 0.23 0.28 0.43 0.33 0.01 0.41 0.28 0.50 0.67

6 0.32 0.37 0.48 0.65 0.59 0.45 0.58 0.56 0.56 0.23 0.37 0.37 0.60 0.56 0.55 0.52 0.55

7 0.46 0.61 0.52 0.01 0.45 0.48 0.44 0.44 0.45 0.38 0.63 0.59 0.37 0.66 0.57 0.66 0.77

OA 0.51 0.61 0.64 0.53 0.66 0.65 0.53 0.65 0.65 0.48 0.67 0.64 0.51 0.68 0.65 0.69 0.75

Kappa 0.37 0.48 0.51 0.37 0.54 0.53 0.39 0.54 0.54 0.34 0.56 0.52 0.37 0.58 0.54 0.58 0.67

Note: Number of intrinsic dimensionality: EV = 1, HS = 5, and NH = 13. Bold values indicate outlier at the 5%
level of significance.

Fig. 3 Thermal hyperspectral imagery, ground truth, and classification maps.
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classification of the 2014 IEEE GRSS data fusion contest. In this context, the presented deep
learning architectures are first described in Table 7.

The execution time of the deep learning architecture consists of training and testing times;
training time demonstrates the time utilization of the learning filters, classification layers, and
fine-tuning the deep feature learning framework. Figure 8 exhibits how the training time changes
with variation in model neurons and iteration epoch parameters. It can be observed that the
training time gradually increases by the extension of the number of layer neurons and iteration
epochs.

Table 4 NB combination classification accuracies.

No.

PCA

EV HS NH EV HS NH EV HS NH EV HS NH EV HS NH SAE CNN

DT DA NB KNN SVM

1 0.70 0.82 0.88 0.79 0.93 0.93 0.75 0.93 0.92 0.78 0.94 0.92 0.87 0.91 0.94 0.93 0.89

2 0.81 0.76 0.82 0.74 0.79 0.76 0.63 0.52 0.54 0.74 0.75 0.76 0.77 0.77 0.76 0.85 0.91

3 0.84 0.83 0.87 0.90 0.93 0.92 0.69 0.76 0.63 0.92 0.94 0.92 0.95 0.96 0.95 0.90 0.95

4 0.73 0.81 0.84 0.71 0.87 0.87 0.37 0.45 0.47 0.69 0.85 0.89 0.72 0.88 0.87 0.74 0.93

5 0.93 0.93 0.93 0.94 0.96 0.96 0.95 0.94 0.97 0.93 0.95 0.94 0.96 0.94 0.96 0.82 0.92

6 0.72 0.73 0.71 0.81 0.77 0.84 0.53 0.64 0.65 0.83 0.84 0.84 0.87 0.88 0.87 0.78 0.93

7 0.85 0.90 0.88 0.93 0.95 0.95 0.86 0.90 0.89 0.82 0.94 0.93 0.95 0.95 0.96 0.93 0.95

OA 0.76 0.82 0.85 0.81 0.89 0.90 0.69 0.80 0.79 0.81 0.90 0.90 0.87 0.90 0.91 0.87 0.91

Kappa 0.69 0.76 0.80 0.76 0.86 0.87 0.61 0.73 0.72 0.75 0.87 0.86 0.83 0.87 0.89 0.82 0.89

Note: Number of intrinsic dimensionality: EV = 1, HS = 5, and NH = 13. Bold values indicate outlier at the 5%
level of significance.

Table 5 BKS combination classification accuracies.

No.

PCA

EV HS NH EV HS NH EV HS NH EV HS NH EV HS NH SAE CNN OBP

DT DA NB KNN SVM

1 0.71 0.85 0.88 0.64 0.95 0.93 0.69 0.95 0.92 0.66 0.94 0.90 0.71 0.91 0.94 0.98 0.98 1.00

2 0.81 0.76 0.82 0.73 0.80 0.75 0.63 0.65 0.67 0.74 0.75 0.77 0.81 0.77 0.81 0.84 0.89 0.89

3 0.82 0.83 0.85 0.86 0.93 0.90 0.74 0.75 0.73 0.89 0.94 0.94 0.95 0.92 0.94 0.89 0.94 0.97

4 0.75 0.83 0.84 0.84 0.82 0.88 0.33 0.45 0.39 0.79 0.88 0.87 0.85 0.90 0.89 0.72 0.87 0.96

5 0.93 0.93 0.93 0.94 0.96 0.96 0.95 0.94 0.97 0.93 0.88 0.95 0.95 0.89 0.96 0.82 0.92 0.96

6 0.72 0.72 0.70 0.85 0.77 0.84 0.45 0.45 0.45 0.83 0.83 0.82 0.87 0.85 0.87 0.78 0.93 0.95

7 0.85 0.89 0.88 0.96 0.94 0.95 0.89 0.88 0.89 0.84 0.94 0.93 0.95 0.95 0.96 0.92 0.95 1.00

OA 0.76 0.83 0.85 0.76 0.90 0.90 0.66 0.79 0.77 0.76 0.90 0.89 0.81 0.89 0.92 0.89 0.95 0.97

Kappa 0.69 0.78 0.80 0.70 0.87 0.87 0.56 0.72 0.70 0.69 0.87 0.85 0.76 0.86 0.89 0.85 0.93 0.96

Note: Number of intrinsic dimensionality: EV = 1, HS = 5, and NH = 13. Bold values indicate outlier at the 5%
level of significance.
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Model depth additionally plays a considerable role in the performance of classification
because it can enhance the feature representation quality of the input data. Mainly, the higher
model depths tend to exploit more invariant and abstract features of the raw data. Within
this context, a series of comparative experiments are carried out to assess how the depth param-
eter defines a significant role in the classification performance (Table 8). It can be noted

Fig. 5 The quantitative evaluation results obtained by the various classifiers.

Fig. 6 The confusion matrix of the best classifiers.

Fig. 4 Combination classification maps.
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Table 6 The hyperparameters of the various classifiers on the dataset of 2014 IEEE GRSS data
fusion contest.

Classifier Hyperparameters

The dataset of 2014 IEEE GRSS
data fusion contest

Visual data Thermal data

DT Minimum number of leaf node observations 1 12

DA Linear coefficient threshold 0 0

Amount of regularization 0 1

NB Data distributions Kernel Normal

Kernel smoothing window width 0.015 —

KNN Distance metric Euclidean Euclidean

Number of nearest neighbors to find 5 5

SVM Coding design onevsone onevsone

Kernel function Gaussian Gaussian

Box constraint 100 100

Kernel scale parameter 1 0.25

SAE Size of input data [5 5 3] [1 83] – [3 3 3]

Size of hidden representation of the autoencoder 15 25

Maximum number of training epochs 1000 1000

Desired proportion of training examples a neuron
reacts to

0.50 0.50

CNN Size of input data [7 7 3] [1 83] – [5 5 5]

Height and width of filters [4 4] – [2 2] [1 7] – [1 6] – [1 7]

Number of filters 16 – 32 16 – 24 – 48

Height and width of pooling region [2 2] – [1 1] [1 2] – [1 2] – [1 2]

Step size for traversing the input [1 1] – [1 1] [1 2] – [1 2] – [1 2]

Initial learning rate 0.01 0.01

Maximum number of training epochs 1000 1000

OBP Multiresolution segmentation Scale parameter 15

Shape 0.25

Compactness 0.50

Threshold of length to width 4.0

Threshold of area pixels 400

Fig. 7 Average OA of the classification results.
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Table 7 The proposed deep learning architectures.

Dataset

SAE CNN

I1 AE2 AE3 AE4 F5 O6 I1

Number of filters

F8 O9

C2 C4 C6

S3 S5 S7

Visual
data

5 × 5 × 3 15 15 15 Fully
connected

layer

1 × 7 7 × 7 × 3 16
4 × 4
2 × 2

32
2 × 2
1 × 1

– Fully
connected

layer

1 × 7

Thermal
data

1 × 110 25 25 25 Fully
connected

layer

1 × 7 1 × 208 16
1 × 7
1 × 2

24
1 × 6
1 × 2

48
1 × 7
1 × 2

Fully
connected

layer

1 × 7

Note: I, input layer; AE, autoencoder layers; C, convolution layers; S, pooling layers; F, fully connected layer;
O, output layer.

Fig. 8 Comparison of training time with the variation of model parameters.

Table 8 Comparison of OA for different model depths.

Depth analysis

SAE CNN

Visual data Thermal data Visual data Thermal data

Layer 1 OA 81.86 64.01 89.05 73.24

Training time 31.82 19.53 160.82 215.26

Testing time 1.25 1.21 45.91 23.36

Layer 2 OA 84.04 67.02 89.72 73.66

Training time 45.81 26.35 172.23 291.83

Testing time 1.29 1.39 46.03 33.66

Layer 3 OA 85.97 68.95 88.30 75.07

Training time 59.74 33.99 190.50 368.15

Testing time 1.49 1.65 50.99 45.48
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that the performance of classification enhances the expansion of the model depth parameter;
simultaneously, the execution time gradually increases by the extension of the number
of layers and iteration epochs. In addition, Fig. 9 shows the convergence curves of the training
samples.

The obtained results prove the significant advantages of the proposed spectral–spatial deep
learning frameworks over the conventional spectral-based classification methods.

4 Conclusion

In this paper, joint spectral–spatial information is extracted in deep learning frameworks for
classification of urban remote sensing data. A series of comparative experiments indicate
that the spectral–spatial feature descriptors enhance the performance of classification compared
with the conventional spectral-based classifiers. Based on consistency over the widely used data-
set of 2014 IEEE GRSS data fusion contest, the presented frameworks provide statistically
higher classification accuracy and appear to be more robust than the traditional classifiers.
Execution time and effect of model depth on the above-mentioned dataset were evaluated
by a set of experiments. We suggest applying a deep learning model to achieve higher classi-
fication accuracy and consume the least amount of execution time. In our future work, we will
consider how to apply pretrained networks to save huge efforts required to retrain the deep learn-
ing architecture.
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