Lin, Zhu und Chen, Yushi und Ghamisi, Pedram und Benediktsson, Jon Atli (2018) Generative Adversarial Networks for Hyperspectral Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 56 (9), Seiten 5046-5063. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2018.2805286. ISSN 0196-2892.
PDF
1MB |
Offizielle URL: http://ieeexplore.ieee.org/document/8307247/
Kurzfassung
A generative adversarial network (GAN) usually contains a generative network and a discriminative network in competition with each other. The GAN has shown its capability in a variety of applications. In this paper, the usefulness and effectiveness of GAN for classification of hyperspectral images (HSIs) are explored for the first time. In the proposed GAN, a convolutional neural network (CNN) is designed to discriminate the inputs and another CNN is used to generate so-called fake inputs. The aforementioned CNNs are trained together: the generative CNN tries to generate fake inputs that are as real as possible, and the discriminative CNN tries to classify the real and fake inputs. This kind of adversarial training improves the generalization capability of the discriminative CNN, which is really important when the training samples are limited. Specifically, we propose two schemes: 1) a well-designed 1D-GAN as a spectral classifier and 2) a robust 3D-GAN as a spectral–spatial classifier. Furthermore, the generated adversarial samples are used with real training samples to fine-tune the discriminative CNN, which improves the final classification performance. The proposed classifiers are carried out on three widely used hyperspectral data sets: Salinas, Indiana Pines, and Kennedy Space Center. The obtained results reveal that the proposed models provide competitive results compared to the state-of-the-art methods. In addition, the proposed GANs open new opportunities in the remote sensing community for the challenging task of HSI classification and also reveal the huge potential of GAN-based methods for the analysis of such complex and inherently nonlinear data.
elib-URL des Eintrags: | https://elib.dlr.de/119294/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Generative Adversarial Networks for Hyperspectral Image Classification | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | März 2018 | ||||||||||||||||||||
Erschienen in: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 56 | ||||||||||||||||||||
DOI: | 10.1109/TGRS.2018.2805286 | ||||||||||||||||||||
Seitenbereich: | Seiten 5046-5063 | ||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Convolutional neural network (CNN), deep learning, generative adversarial network (GAN), hyperspectral image (HSI) classification | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung | ||||||||||||||||||||
Hinterlegt von: | Ghamisi, Pedram | ||||||||||||||||||||
Hinterlegt am: | 13 Mär 2018 12:16 | ||||||||||||||||||||
Letzte Änderung: | 31 Jul 2019 20:16 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags