Manss, Christoph und Shutin, Dmitriy und Leus, Geert (2017) DISTRIBUTED SPLITTING-OVER-FEATURES SPARSE BAYESIAN LEARNING WITH ALTERNATING DIRECTION METHOD OF MULTIPLIERS. In: ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings. ICASSP 2018, 2018-04-15 - 2018-04-20, Calgary, Kanada. doi: 10.1109/ICASSP.2018.8462229.
PDF
- Nur DLR-intern zugänglich
462kB |
Kurzfassung
In processing spatially distributed data, multi-agent robotic platforms equipped with sensors and computing capabilities are gaining interest for applications in inhospitable environments. In this work an algorithm for a distributed realization of sparse bayesian learning (SBL) is discussed for learning a static spatial process with the splitting-over-features approach over a network of interconnected agents. The observed process is modeled as a superposition of weighted kernel functions, or features as we call it, centered at the agent’s measurement locations. SBL is then used to determine which feature is relevant for representing the spatial process. Using upper bounding convex functions, the SBL parameter estimation is formulated as ℓ1-norm constrained optimization, which is solved distributively using alternating direction method of multipliers (ADMM) and averaged consensus. The performance of the method is demonstrated by processing real magnetic field data collected in a laboratory.
elib-URL des Eintrags: | https://elib.dlr.de/118885/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vorlesung) | ||||||||||||||||
Titel: | DISTRIBUTED SPLITTING-OVER-FEATURES SPARSE BAYESIAN LEARNING WITH ALTERNATING DIRECTION METHOD OF MULTIPLIERS | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 27 November 2017 | ||||||||||||||||
Erschienen in: | ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.1109/ICASSP.2018.8462229 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Sparse Bayesian learning, ADMM, multi-agent systems, learning over networks | ||||||||||||||||
Veranstaltungstitel: | ICASSP 2018 | ||||||||||||||||
Veranstaltungsort: | Calgary, Kanada | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 15 April 2018 | ||||||||||||||||
Veranstaltungsende: | 20 April 2018 | ||||||||||||||||
Veranstalter : | IEEE | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Kommunikation und Navigation | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R KN - Kommunikation und Navigation | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Projekt Navigation 4.0 (alt) | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Kommunikation und Navigation > Nachrichtensysteme | ||||||||||||||||
Hinterlegt von: | Manß, Christoph | ||||||||||||||||
Hinterlegt am: | 09 Feb 2018 09:39 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:23 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags