Brauchle, Jörg und Bayer, Steven und Berger, Ralf (2017) Automatic Ship Detection on Multispectral and Thermal Infrared Aerial Images Using MACS-Mar Remote Sensing Platform. In: 8th Pacific Rim Symposium on Image and Video Technology, PSIVT 2017, 10799, Seiten 382-395. Springer Nature. Pacific-Rim Symposium on Image and Video Technology (PSIVT 2017), 2017-11-20 - 2017-11-24, Wuhan, China. doi: 10.1007/978-3-319-92753-4_30. ISBN 978-3-319-92753-4. ISSN 0302-9743.
PDF
1MB |
Offizielle URL: https://www.springer.com/de/book/9783319927527
Kurzfassung
The Modular Aerial Camera System (MACS) is a development platform for optical remote sensing concepts, algorithms and special environments. For Real- Time Services for Maritime Security (EMSec joint project) a new multi-sensor configuration MACS-Mar was realized. It consists of 4 co-aligned sensor heads in the visible RGB, near infrared (NIR, 700-950 nm), hyperspectral (HS, 450-900 nm) and thermal infrared (TIR, 7.5-14 um) spectral range, a mid-cost GNSS/INS system, a processing unit and two data links. On-board image projection, cropping of redundant data and compression enable the instant generation of direct-georeferenced high resolution image mosaics, automatic object detection, vectorization and annotation of floating objects on the water surface. The results were transmitted over a distance up to 50 km in real-time via narrow and broadband data links and were visualized in a maritime situation awareness system. For the automatic onboard detection of objects a segmentation and classification workflow based on RGB, NIR and TIR information was developed and tested in September 2016. The completeness of the object detection in the experiment resulted in 95 %, the correctness in 53 %. Mostly bright backwash of ships led to overdetection of the number of objects, further refinement using water homogeneity in the TIR, as implemented in the workflow, could not be carried out due to problems with the TIR sensor. To analyze the influence of high resolution TIR imagery and to reach the expected detection quality a further experiment was conducted in August 2017. Adding TIR images the completeness was increased to 98 % and the correctness to 74 %.
elib-URL des Eintrags: | https://elib.dlr.de/118512/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Automatic Ship Detection on Multispectral and Thermal Infrared Aerial Images Using MACS-Mar Remote Sensing Platform | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 22 November 2017 | ||||||||||||||||
Erschienen in: | 8th Pacific Rim Symposium on Image and Video Technology, PSIVT 2017 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
Band: | 10799 | ||||||||||||||||
DOI: | 10.1007/978-3-319-92753-4_30 | ||||||||||||||||
Seitenbereich: | Seiten 382-395 | ||||||||||||||||
Herausgeber: |
| ||||||||||||||||
Verlag: | Springer Nature | ||||||||||||||||
Name der Reihe: | Lecture Notes in Computer Science | ||||||||||||||||
ISSN: | 0302-9743 | ||||||||||||||||
ISBN: | 978-3-319-92753-4 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | maritime security; ship detection; MACS; real-time; aerial camera | ||||||||||||||||
Veranstaltungstitel: | Pacific-Rim Symposium on Image and Video Technology (PSIVT 2017) | ||||||||||||||||
Veranstaltungsort: | Wuhan, China | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 20 November 2017 | ||||||||||||||||
Veranstaltungsende: | 24 November 2017 | ||||||||||||||||
Veranstalter : | Central China Normal University, Wuhan 430079 China | ||||||||||||||||
HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||
HGF - Programm: | keine Zuordnung | ||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||
DLR - Schwerpunkt: | keine Zuordnung | ||||||||||||||||
DLR - Forschungsgebiet: | keine Zuordnung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | keine Zuordnung | ||||||||||||||||
Standort: | Berlin-Adlershof | ||||||||||||||||
Institute & Einrichtungen: | Institut für Optische Sensorsysteme > Sicherheitsforschung und Anwendungen | ||||||||||||||||
Hinterlegt von: | Brauchle, Jörg | ||||||||||||||||
Hinterlegt am: | 30 Jan 2018 08:31 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:22 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags