Mou, Lichao und Ghamisi, Pedram und Zhu, Xiaoxiang (2017) Fully conv-deconv network for unsupervised spectral-spatial feature extraction of hyperspectral imagery via residual learning. In: Proceedings of IGARSS 2017, Seiten 1-4. IEEE Xplore. IGARSS 2017, 2017-07-23 - 2017-07-28, Fort Worth, TX, USA. doi: 10.1109/igarss.2017.8128169.
PDF
1MB |
Offizielle URL: http://www.igarss2017.org/
Kurzfassung
Supervised approaches classify input data using a set of representative samples for each class, known as training samples. The collection of such samples are expensive and time-demanding. Hence, unsupervised feature learning, which has a quick access to arbitrary amount of unlabeled data, is conceptually of high interest. In this paper, we propose a novel network architecture, fully Conv-Deconv network with residual learning, for unsupervised spectral-spatial feature learning of hyperspectral images, which is able to be trained in an end-to-end manner. Specifically, our network is based on the so-called encoder-decoder paradigm, i.e., the input 3D hyperspectral patch is first transformed into a typically lower-dimensional space via a convolutional sub-network (encoder), and then expanded to reproduce the initial data by a deconvolutional sub-network (decoder). Experimental results on the Pavia University hyperspectral data set demonstrate competitive performance obtained by the proposed methodology compared to other studied approaches.
elib-URL des Eintrags: | https://elib.dlr.de/118271/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Fully conv-deconv network for unsupervised spectral-spatial feature extraction of hyperspectral imagery via residual learning | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | Juli 2017 | ||||||||||||||||
Erschienen in: | Proceedings of IGARSS 2017 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.1109/igarss.2017.8128169 | ||||||||||||||||
Seitenbereich: | Seiten 1-4 | ||||||||||||||||
Verlag: | IEEE Xplore | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Convolutional network, deconvolutional network, hyperspectral image classification, residual learning, unsupervised spectral-spatial feature learning | ||||||||||||||||
Veranstaltungstitel: | IGARSS 2017 | ||||||||||||||||
Veranstaltungsort: | Fort Worth, TX, USA | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 23 Juli 2017 | ||||||||||||||||
Veranstaltungsende: | 28 Juli 2017 | ||||||||||||||||
Veranstalter : | IEEE | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung | ||||||||||||||||
Hinterlegt von: | Mou, LiChao | ||||||||||||||||
Hinterlegt am: | 18 Jan 2018 13:35 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:22 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags