Yokoya, Naoto und Ghamisi, Pedram und Xia, Junshi (2017) Multimodal, multitemporal, and multisource global data fusion for local climate zones classification based on ensemble learning. In: IEEE 2017 Geoscience and Remote Sensing Symposium (IGARSS), Seiten 1197-1200. IEEE Xplore. IGARSS, 2017-07-23 - 2017-07-28, Fort Worth, TX, USA. doi: 10.1109/IGARSS.2017.8127172. ISSN 2153-7003.
PDF
664kB |
Offizielle URL: http://ieeexplore.ieee.org/document/8127172/
Kurzfassung
This paper presents a new methodology for classification of local climate zones based on ensemble learning techniques. Landsat-8 data and open street map data are used to extract spectral-spatial features, including spectral reflectance, spectral indexes, and morphological profiles fed to subsequent classification methods as inputs. Canonical correlation forests and rotation forests are used for the classification step. The final classification map is generated by majority voting on different classification maps obtained by the two classifiers using multiple training subsets. The proposed method achieved an overall accuracy of 74.94% and a kappa coefficient of 0.71 in the 2017 IEEE GRSS Data Fusion Contest.
elib-URL des Eintrags: | https://elib.dlr.de/118214/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Multimodal, multitemporal, and multisource global data fusion for local climate zones classification based on ensemble learning | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | Dezember 2017 | ||||||||||||||||
Erschienen in: | IEEE 2017 Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.1109/IGARSS.2017.8127172 | ||||||||||||||||
Seitenbereich: | Seiten 1197-1200 | ||||||||||||||||
Verlag: | IEEE Xplore | ||||||||||||||||
ISSN: | 2153-7003 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Multimodal, multitemporal, multisource global data Fusion, local climate zones, ensemble learning techniques | ||||||||||||||||
Veranstaltungstitel: | IGARSS | ||||||||||||||||
Veranstaltungsort: | Fort Worth, TX, USA | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 23 Juli 2017 | ||||||||||||||||
Veranstaltungsende: | 28 Juli 2017 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - SAR-Methoden, R - Optische Fernerkundung, R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung | ||||||||||||||||
Hinterlegt von: | Zielske, Mandy | ||||||||||||||||
Hinterlegt am: | 12 Jan 2018 15:04 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:22 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags