Chen, Yushi und Zhu, Lin und Ghamisi, Pedram und Jia, Xiuping und Li, Guoyu und Tang, Liang (2017) Hyperspectral Images Classification With Gabor Filtering and Convolutional Neural Network. IEEE Geoscience and Remote Sensing Letters, 14 (12), Seiten 2355-2359. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2017.2764915. ISSN 1545-598X.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: http://ieeexplore.ieee.org/document/8100719/
Kurzfassung
Recently, the capability of deep learning-based approaches, especially deep convolutional neural networks (CNNs), has been investigated for hyperspectral remote sensing feature extraction (FE) and classification. Due to the large number of learnable parameters in convolutional filters, lots of training samples are needed in deep CNNs to avoid the overfitting problem. On the other hand, Gabor filtering can effectively extract spatial information including edges and textures, which may reduce the FE burden of the CNNs. In this letter, in order to make the most of deep CNN and Gabor filtering, a new strategy, which combines Gabor filters with convolutional filters, is proposed for hyperspectral image classification to mitigate the problem of overfitting. The obtained results reveal that the proposed model provides competitive results in terms of classification accuracy, especially when only a limited number of training samples are available.
elib-URL des Eintrags: | https://elib.dlr.de/118212/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||
Titel: | Hyperspectral Images Classification With Gabor Filtering and Convolutional Neural Network | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | Dezember 2017 | ||||||||||||||||||||||||||||
Erschienen in: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||
Band: | 14 | ||||||||||||||||||||||||||||
DOI: | 10.1109/LGRS.2017.2764915 | ||||||||||||||||||||||||||||
Seitenbereich: | Seiten 2355-2359 | ||||||||||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||||||
ISSN: | 1545-598X | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | Convolutional Neural Networks (CNNs), feature extraction (FE), Gabor Filtering | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Optische Fernerkundung, R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung | ||||||||||||||||||||||||||||
Hinterlegt von: | Zielske, Mandy | ||||||||||||||||||||||||||||
Hinterlegt am: | 12 Jan 2018 15:13 | ||||||||||||||||||||||||||||
Letzte Änderung: | 08 Mär 2018 18:31 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags