Du, Peijun und Xia, Junshi und Ghamisi, Pedram und Iwasaki, Akira und Benediktsson, Jon Atli (2017) Multiple composite kernel learning for hyperspectral image classification. In: 2017 IEEE Geoscience and Remote Sensing Symposium (IGARSS), Seiten 2223-2226. IEEE Xplore. IGARSS 2017, 2017-07-23 - 2017-07-28, Fort Worth, TX, USA. doi: 10.1109/igarss.2017.8127430. ISSN 2153-7003.
PDF
390kB |
Offizielle URL: http://ieeexplore.ieee.org/document/8127430/
Kurzfassung
In this work, we develop a new framework to combine ensemble learning and composite kernel learning for hyperspectral image classification. We refer it as the multiple composite kernel learning, which is based on an iterative architecture. More specifically, in each iteration, we use the rotation-based ensemble to create rotation matrix, which is used to generate rotated features for both spectral and spatial information (e.g., extinction profiles). Then, the new spectral and spatial features are integrated into the composite kernels based on support vector machines classifier. Different rotation matrices will lead to obtaining various newly spectral and spatial characteristics, thereby they further increase the diversity and the classification performance. Experimental results on Indian Pines benchmark hyperspectral dataset demonstrate the excellent performance of the proposed method.
elib-URL des Eintrags: | https://elib.dlr.de/118211/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
Titel: | Multiple composite kernel learning for hyperspectral image classification | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | Juli 2017 | ||||||||||||||||||||||||
Erschienen in: | 2017 IEEE Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
DOI: | 10.1109/igarss.2017.8127430 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 2223-2226 | ||||||||||||||||||||||||
Verlag: | IEEE Xplore | ||||||||||||||||||||||||
ISSN: | 2153-7003 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Multiple composite kernel learning, hyperspectral image classification | ||||||||||||||||||||||||
Veranstaltungstitel: | IGARSS 2017 | ||||||||||||||||||||||||
Veranstaltungsort: | Fort Worth, TX, USA | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 23 Juli 2017 | ||||||||||||||||||||||||
Veranstaltungsende: | 28 Juli 2017 | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt), R - Optische Fernerkundung | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung | ||||||||||||||||||||||||
Hinterlegt von: | Zielske, Mandy | ||||||||||||||||||||||||
Hinterlegt am: | 12 Jan 2018 14:59 | ||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:22 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags