Rasti, Behnood und Ulfarsson, Magnus Orn und Ghamisi, Pedram (2017) Automatic Hyperspectral Image Restoration Using Sparse and Low-Rank Modeling. IEEE Geoscience and Remote Sensing Letters, 14 (12), Seiten 2335-2339. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2017.2764059. ISSN 1545-598X.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: http://ieeexplore.ieee.org/document/8098642/
Kurzfassung
Hyperspectral restoration is a preprocessing step for hyperspectral imagery. In this letter, we propose a parameter-free method for the restoration of hyperspectral images (HSIs) called HyRes. The restoration method is based on a sparse low-rank model that uses the ℓ1 penalized least squares for estimating the unknown signal. The Stein's unbiased risk estimator is exploited to select all the parameters of the model yielding a fully automatic (parameter free) technique. Experimental results confirm that HyRes outperforms the state-of-the-art techniques in terms of signal-to-noise ratio, structural similarity index, and spectral angle distance for a simulated data set and in terms of noise-level estimation for the real data sets used in this letter. In the experiments, it was noted that HyRes is computationally less expensive compared with competitive techniques. Therefore, HyRes can be used as a reliable automatic preprocessing step for further analysis of HSIs.
elib-URL des Eintrags: | https://elib.dlr.de/118210/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | Automatic Hyperspectral Image Restoration Using Sparse and Low-Rank Modeling | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | Dezember 2017 | ||||||||||||||||
Erschienen in: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 14 | ||||||||||||||||
DOI: | 10.1109/LGRS.2017.2764059 | ||||||||||||||||
Seitenbereich: | Seiten 2335-2339 | ||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||
ISSN: | 1545-598X | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Hyperspectral restoration, hyperspectral imagery, parameter-free method Hyres, sparse low-rank model | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt), R - Optische Fernerkundung | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung | ||||||||||||||||
Hinterlegt von: | Zielske, Mandy | ||||||||||||||||
Hinterlegt am: | 12 Jan 2018 15:11 | ||||||||||||||||
Letzte Änderung: | 08 Mär 2018 18:31 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags