Mou, Lichao und Schmitt, Michael und Wang, Yuanyuan und Zhu, Xiao Xiang (2017) A CNN for the identification of corresponding patches in SAR and optical imagery of urban scenes. In: 2017 Joint Urban Remote Sensing Event, JURSE 2017, Seiten 1-4. JURSE 2017, 2017-03-06 - 2017-03-08, Dubai, UAE. doi: 10.1109/JURSE.2017.7924548.
PDF
1MB |
Offizielle URL: http://ieeexplore.ieee.org/document/7924548/
Kurzfassung
In this paper we propose a convolutional neural network (CNN), which allows to identify corresponding patches of very high resolution (VHR) optical and SAR imagery of complex urban scenes. Instead of a siamese architecture as conventionally used in CNNs designed for image matching, we resort to a pseudo-siamese configuration with no interconnection between the two streams for SAR and optical imagery. The network is trained with automatically generated training data and does not resort to any hand-crafted features. First evaluations show that the network is able to predict corresponding patches with high accuracy, thus indicating great potential for further development to a generalized multi-sensor matching procedure.
elib-URL des Eintrags: | https://elib.dlr.de/118154/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | A CNN for the identification of corresponding patches in SAR and optical imagery of urban scenes | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | März 2017 | ||||||||||||||||||||
Erschienen in: | 2017 Joint Urban Remote Sensing Event, JURSE 2017 | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
DOI: | 10.1109/JURSE.2017.7924548 | ||||||||||||||||||||
Seitenbereich: | Seiten 1-4 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | convolutional neural network (CNN), optical and SAR imagery, corresponding patches. | ||||||||||||||||||||
Veranstaltungstitel: | JURSE 2017 | ||||||||||||||||||||
Veranstaltungsort: | Dubai, UAE | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 6 März 2017 | ||||||||||||||||||||
Veranstaltungsende: | 8 März 2017 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung | ||||||||||||||||||||
Hinterlegt von: | Mou, LiChao | ||||||||||||||||||||
Hinterlegt am: | 11 Jan 2018 15:35 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:22 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags