Ihme, Klas und Unni, Anirudh und Zhang, Meng und Rieger, Jochem und Jipp, Meike (2018) Recognizing Frustration of Drivers from Face Video Recordings and Brain Activation Measurements with Functional Near Infrared Spectroscopy. Frontiers in Human Neuroscience, 12, Seite 327. Frontiers Media S.A.. doi: 10.3389/fnhum.2018.00327. ISSN 1662-5161.
PDF
2MB |
Offizielle URL: https://www.frontiersin.org/articles/10.3389/fnhum.2018.00327/full
Kurzfassung
Experiencing frustration while driving can harm cognitive processing, result in aggressive behavior, and hence negatively influence driving performance and traffic safety. Being able to automatically detect frustration would allow adaptive driver assistance and automation systems to adequately react to a driver's frustration and mitigate potential negative consequences. To identify reliable and valid indicators of drivers' frustration, we conducted two driving simulator experiments. In the first experiment, we aimed to reveal facial expressions that indicate frustration in continuous video recordings of the driver's face taken while driving highly realistic simulator scenarios in which frustrated or non-frustrated emotional states were experienced. An automated analysis of facial expressions combined with multivariate logistic regression classification revealed that frustrated time intervals can be discriminated from non-frustrated ones with accuracy of 62.0 % (mean over 30 participants). A further analysis of the facial expressions revealed that frustrated drivers tend to activate muscles in the mouth region (chin raiser, lip pucker, lip pressor). In the second experiment, we measured cortical activation with whole head functional near-infrared spectroscopy (fNIRS) while participants experienced frustrating and non-frustrating driving simulator scenarios. Multivariate logistic regression applied to the fNIRS measurements allowed us to discriminate between frustrated and non-frustrated driving intervals with higher accuracy of 78.1 % (mean over 12 subjects). Frustrated driving intervals were indicated by increased activation in the inferior frontal, putative premotor, and occipito-temporal cortices. Our results show that facial and cortical markers of frustration can be informative for time resolved driver state identification in complex realistic driving situations. The markers derived here can potentially be used as an input for future adaptive driver assistance and automation systems that detect driver frustration and adaptively react to mitigate it.
elib-URL des Eintrags: | https://elib.dlr.de/117957/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Recognizing Frustration of Drivers from Face Video Recordings and Brain Activation Measurements with Functional Near Infrared Spectroscopy | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | August 2018 | ||||||||||||||||||||||||
Erschienen in: | Frontiers in Human Neuroscience | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
Band: | 12 | ||||||||||||||||||||||||
DOI: | 10.3389/fnhum.2018.00327 | ||||||||||||||||||||||||
Seitenbereich: | Seite 327 | ||||||||||||||||||||||||
Verlag: | Frontiers Media S.A. | ||||||||||||||||||||||||
ISSN: | 1662-5161 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Frustration, Driver State Recognition, Facial Expressions, functional Near Infrared Spectroscopy, Adaptive Automation | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||||||
HGF - Programmthema: | Bodengebundener Verkehr (alt) | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | V BF - Bodengebundene Fahrzeuge | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - Fahrzeugintelligenz (alt) | ||||||||||||||||||||||||
Standort: | Braunschweig | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Verkehrssystemtechnik > Human Factors | ||||||||||||||||||||||||
Hinterlegt von: | Ihme, Klas | ||||||||||||||||||||||||
Hinterlegt am: | 06 Sep 2018 15:11 | ||||||||||||||||||||||||
Letzte Änderung: | 02 Nov 2023 09:55 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags