elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Recognizing Frustration of Drivers from Face Video Recordings and Brain Activation Measurements with Functional Near Infrared Spectroscopy

Ihme, Klas und Unni, Anirudh und Zhang, Meng und Rieger, Jochem und Jipp, Meike (2018) Recognizing Frustration of Drivers from Face Video Recordings and Brain Activation Measurements with Functional Near Infrared Spectroscopy. Frontiers in Human Neuroscience, 12, Seite 327. Frontiers Media S.A.. doi: 10.3389/fnhum.2018.00327. ISSN 1662-5161.

[img] PDF
2MB

Offizielle URL: https://www.frontiersin.org/articles/10.3389/fnhum.2018.00327/full

Kurzfassung

Experiencing frustration while driving can harm cognitive processing, result in aggressive behavior, and hence negatively influence driving performance and traffic safety. Being able to automatically detect frustration would allow adaptive driver assistance and automation systems to adequately react to a driver's frustration and mitigate potential negative consequences. To identify reliable and valid indicators of drivers' frustration, we conducted two driving simulator experiments. In the first experiment, we aimed to reveal facial expressions that indicate frustration in continuous video recordings of the driver's face taken while driving highly realistic simulator scenarios in which frustrated or non-frustrated emotional states were experienced. An automated analysis of facial expressions combined with multivariate logistic regression classification revealed that frustrated time intervals can be discriminated from non-frustrated ones with accuracy of 62.0 % (mean over 30 participants). A further analysis of the facial expressions revealed that frustrated drivers tend to activate muscles in the mouth region (chin raiser, lip pucker, lip pressor). In the second experiment, we measured cortical activation with whole head functional near-infrared spectroscopy (fNIRS) while participants experienced frustrating and non-frustrating driving simulator scenarios. Multivariate logistic regression applied to the fNIRS measurements allowed us to discriminate between frustrated and non-frustrated driving intervals with higher accuracy of 78.1 % (mean over 12 subjects). Frustrated driving intervals were indicated by increased activation in the inferior frontal, putative premotor, and occipito-temporal cortices. Our results show that facial and cortical markers of frustration can be informative for time resolved driver state identification in complex realistic driving situations. The markers derived here can potentially be used as an input for future adaptive driver assistance and automation systems that detect driver frustration and adaptively react to mitigate it.

elib-URL des Eintrags:https://elib.dlr.de/117957/
Dokumentart:Zeitschriftenbeitrag
Titel:Recognizing Frustration of Drivers from Face Video Recordings and Brain Activation Measurements with Functional Near Infrared Spectroscopy
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Ihme, KlasKlas.Ihme (at) dlr.dehttps://orcid.org/0000-0002-7911-3512NICHT SPEZIFIZIERT
Unni, AnirudhUniversität OldenburgNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Zhang, MengMeng.Zhang (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Rieger, JochemUniversität OldenburgNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Jipp, MeikeMeike.Jipp (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:August 2018
Erschienen in:Frontiers in Human Neuroscience
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:12
DOI:10.3389/fnhum.2018.00327
Seitenbereich:Seite 327
Verlag:Frontiers Media S.A.
ISSN:1662-5161
Status:veröffentlicht
Stichwörter:Frustration, Driver State Recognition, Facial Expressions, functional Near Infrared Spectroscopy, Adaptive Automation
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Bodengebundener Verkehr (alt)
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V BF - Bodengebundene Fahrzeuge
DLR - Teilgebiet (Projekt, Vorhaben):V - Fahrzeugintelligenz (alt)
Standort: Braunschweig
Institute & Einrichtungen:Institut für Verkehrssystemtechnik > Human Factors
Hinterlegt von: Ihme, Klas
Hinterlegt am:06 Sep 2018 15:11
Letzte Änderung:02 Nov 2023 09:55

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.