Wang, Tick Son (2017) Incremental Deep Learning for Object Classification. DLR-Interner Bericht. DLR-IB-RM-OP-2017-132. Masterarbeit. Technische Universität München.
PDF
- Nur DLR-intern zugänglich
4MB |
Kurzfassung
In robotics applications, it is common for tasks to be modified over time. For example, a classification task might be expanded over time to classify more and more classes. The focus of this thesis is to compare the potential of the traditional fine-tuning approach and the newly proposed Progressive Neural Network (PNN) approach [Rusu et al., 2016a] to incrementally adapt a deep predictive model to such dynamically changing tasks. Empirical results are presented in thesis showing that in certain scenarios PNN is significantly more effective than fine-tuning in this regard. To determine these prospective scenarios, where PNN is expected to outperform the fine-tuning approach, this thesis presented a hypothesis which is validated by the experiment results. In addition to that, this thesis also proposed a new method to extend a classifier with new classes with PNN. The experiment results in this thesis showed that it is more effective and reliable than the fine-tuning approach.
elib-URL des Eintrags: | https://elib.dlr.de/117632/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Berichtsreihe (DLR-Interner Bericht, Masterarbeit) | ||||||||
Titel: | Incremental Deep Learning for Object Classification | ||||||||
Autoren: |
| ||||||||
Datum: | 15 Juli 2017 | ||||||||
Referierte Publikation: | Nein | ||||||||
Open Access: | Nein | ||||||||
Status: | veröffentlicht | ||||||||
Stichwörter: | Progressive Neural Network, Deep Learning, Robot Vision, Computer Vision | ||||||||
Institution: | Technische Universität München | ||||||||
Abteilung: | Department of Informatics | ||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||
HGF - Programm: | Raumfahrt | ||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben Multisensorielle Weltmodellierung (alt) | ||||||||
Standort: | Oberpfaffenhofen | ||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition | ||||||||
Hinterlegt von: | Brucker, Manuel | ||||||||
Hinterlegt am: | 21 Dez 2017 10:10 | ||||||||
Letzte Änderung: | 21 Dez 2017 10:10 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags