Wang, Tick Son (2017) Incremental Deep Learning for Object Classification. DLR-Interner Bericht. DLR-IB-RM-OP-2017-132. Masterarbeit. Technische Universität München.
| ![[img]](https://elib.dlr.de/style/images/fileicons/application_pdf.png) | PDF
 - Nur DLR-intern zugänglich 4MB | 
Kurzfassung
In robotics applications, it is common for tasks to be modified over time. For example, a classification task might be expanded over time to classify more and more classes. The focus of this thesis is to compare the potential of the traditional fine-tuning approach and the newly proposed Progressive Neural Network (PNN) approach [Rusu et al., 2016a] to incrementally adapt a deep predictive model to such dynamically changing tasks. Empirical results are presented in thesis showing that in certain scenarios PNN is significantly more effective than fine-tuning in this regard. To determine these prospective scenarios, where PNN is expected to outperform the fine-tuning approach, this thesis presented a hypothesis which is validated by the experiment results. In addition to that, this thesis also proposed a new method to extend a classifier with new classes with PNN. The experiment results in this thesis showed that it is more effective and reliable than the fine-tuning approach.
| elib-URL des Eintrags: | https://elib.dlr.de/117632/ | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Berichtsreihe (DLR-Interner Bericht, Masterarbeit) | ||||||||
| Titel: | Incremental Deep Learning for Object Classification | ||||||||
| Autoren: | 
 | ||||||||
| Datum: | 15 Juli 2017 | ||||||||
| Referierte Publikation: | Nein | ||||||||
| Open Access: | Nein | ||||||||
| Status: | veröffentlicht | ||||||||
| Stichwörter: | Progressive Neural Network, Deep Learning, Robot Vision, Computer Vision | ||||||||
| Institution: | Technische Universität München | ||||||||
| Abteilung: | Department of Informatics | ||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||
| HGF - Programm: | Raumfahrt | ||||||||
| HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||
| DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben Multisensorielle Weltmodellierung (alt) | ||||||||
| Standort: | Oberpfaffenhofen | ||||||||
| Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition | ||||||||
| Hinterlegt von: | Brucker, Manuel | ||||||||
| Hinterlegt am: | 21 Dez 2017 10:10 | ||||||||
| Letzte Änderung: | 21 Dez 2017 10:10 | 
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags
 
		 
	 
		 Versenden
Versenden
				 Drucken
Drucken
				 
			