elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Wall Shear Stress Measurements on a Double-Decker Train

Haff, Johannes and Schülein, Erich and Henning, Arne and Cochard, Steve and Loose, Sigfried (2018) Wall Shear Stress Measurements on a Double-Decker Train. In: New Results in Numerical and Experimental Fluid Mechanics XI Notes on Numerical Fluid Mechanics and Multidisciplinary Design 136, 136. Springer. pp. 685-694. doi: 10.1007/978-3-319-64519-3_61. ISBN 978-3-319-64518-6. ISSN 1612-2909.

Full text not available from this repository.

Official URL: https://doi.org/10.1007/978-3-319-64519-3

Abstract

The prediction of the total energy consumption of new or further developed rail vehicles is still a comprehensive task in the industrial development process. The aerodynamic drag is a dominant part of the driving resistance of today’s rail vehicles. An estimation of the energy consumption therefore requires information of the aerodynamically induced drag. Computational studies of the current state-of-the art do not meet the high accuracy level required for a reliable prediction of the total energy consumption of a rail vehicle. Scale model geometries in wind tunnel experiments do not allow for simulating realistic near wall flow conditions as a fundamental aspect to predict friction drag. Besides, no test facilities are available for a full-scale train configuration. Nowadays, coasting tests on a test track are generally used by the industry to predict the aerodynamic drag of rail vehicles. A main disadvantage of coasting tests is the strong impact of the environmental conditions on the measurement results. Therefore, a large number of test runs - associated with high costs - is necessary to produce reliable experimental results. A key interest from industry partners of DLR is the reduction of development costs by increasing the performance of computational studies to predict the aerodynamic drag of a rail vehicle. Besides pressure and vortex drag induced by add-on parts such as the pantograph, the bogies, the inter-car gaps and other supply systems and the pressure drag between the vehicle front and rear end, the major part of aerodynamic drag of a rail vehicle is friction drag as a result of the developing boundary layer on the train shape defined by the wall shear stress. This article describes an experimental study performed on an electric double-deck train KISS on a test track to measure the wall shear stress under real operating conditions. The results are compared to theoretical values and results published in the literature. The measured wall shear stresses are further used to improve the predictability of computational studies. The idea is to modify the surface rough-ness of the wall boundary condition of the vehicle geometry to reach the same wall shear stress as measured in the experiment. The oil film interferometry as a non-intrusive method to measure the wall shear stress was therefore used in the experiments.

Item URL in elib:https://elib.dlr.de/116273/
Document Type:Contribution to a Collection
Additional Information:ISSN 1860-0824 (elektronisch; ISBN 978-3-319-64519-3 (eBook); doi.org/10.1007/978-3-319-64519-3_61
Title:Wall Shear Stress Measurements on a Double-Decker Train
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Haff, JohannesUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Schülein, ErichUNSPECIFIEDhttps://orcid.org/0000-0002-1125-8504UNSPECIFIED
Henning, ArneUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Cochard, Stevestadler rail, ch-9423 altenrhein, switzerlandUNSPECIFIEDUNSPECIFIED
Loose, SigfriedUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Date:2018
Journal or Publication Title:New Results in Numerical and Experimental Fluid Mechanics XI
Refereed publication:Yes
Open Access:No
Gold Open Access:No
In SCOPUS:No
In ISI Web of Science:No
Volume:136
DOI:10.1007/978-3-319-64519-3_61
Page Range:pp. 685-694
Editors:
EditorsEmailEditor's ORCID iDORCID Put Code
Dillmann, AndreasDLR GöttingenUNSPECIFIEDUNSPECIFIED
Heller, GerdAirbus BremenUNSPECIFIEDUNSPECIFIED
Krämer, EwaldUNI StuttgartUNSPECIFIEDUNSPECIFIED
Wagner, ClausDLR GöttingenUNSPECIFIEDUNSPECIFIED
Bansmer, StephanTU BraunschweigUNSPECIFIEDUNSPECIFIED
Radespiel, RolfTU BraunschweigUNSPECIFIEDUNSPECIFIED
Semaan, RichardTU BraunschweigUNSPECIFIEDUNSPECIFIED
Publisher:Springer
Series Name:Notes on Numerical Fluid Mechanics and Multidisciplinary Design 136
ISSN:1612-2909
ISBN:978-3-319-64518-6
Status:Published
Keywords:Wandschubspannung, Messtechnik, Züge
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Transport
HGF - Program Themes:Terrestrial Vehicles (old)
DLR - Research area:Transport
DLR - Program:V BF - Bodengebundene Fahrzeuge
DLR - Research theme (Project):V - Next Generation Train III (old)
Location: Göttingen
Institutes and Institutions:Institute for Aerodynamics and Flow Technology > Fluid Systems, GO
Institute for Aerodynamics and Flow Technology > High Speed Configurations, GO
Deposited By: Bachmann, Barbara
Deposited On:07 Dec 2017 15:33
Last Modified:20 Jul 2023 12:28

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.