Bagheri, Hossein und Schmitt, Michael und Zhu, Xiao Xiang (2018) Fusion of TanDEM-X and Cartosat-1 elevation data supported by neural network-predicted weight maps. ISPRS Journal of Photogrammetry and Remote Sensing, 144, Seiten 285-297. Elsevier. doi: 10.1016/j.isprsjprs.2018.07.007. ISSN 0924-2716.
PDF
8MB |
Offizielle URL: https://www.sciencedirect.com/science/article/abs/pii/S0924271618301990
Kurzfassung
Recently, the bistatic SAR interferometry mission TanDEM-X provided a global terrain map with unprecedented accuracy. However, visual inspection and empirical as- sessment of TanDEM-X elevation data against high-resolution ground truth illustrates that the quality of the DEM decreases in urban areas because of SAR-inherent imaging properties. One possible solution for an enhancement of the TanDEM-X DEM quality is to fuse it with other elevation data derived from high- resolution optical stereoscopic imagery, such as that provided by the Cartosat-1 mission. This is usually done by Weighted Averaging (WA) of previously aligned DEM cells. The main contribution of this paper is to develop a method to efficiently predict weight maps in order to achieve optimized fusion results. The predic- tion is modeled using a fully connected Artificial Neural Network (ANN). The idea of this ANN is to extract suitable features from DEMs that relate to height residuals in training areas and then to automatically learn the pattern of the relationship between height errors and features. The results show the DEM fusion based on the ANN-predicted weights improves the qualities of the study DEMs. Apart from increasing the absolute accuracy of Cartosat-1 DEM by DEM fusion, the relative accuracy (respective to reference LiDAR data) of DEMs is improved by up to 50% in urban areas and 22% in non-urban areas while the improvement by the HEM-based method does not exceed 20% and 10% in urban and non-urban areas respectively.
elib-URL des Eintrags: | https://elib.dlr.de/116067/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | Fusion of TanDEM-X and Cartosat-1 elevation data supported by neural network-predicted weight maps | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | Oktober 2018 | ||||||||||||||||
Erschienen in: | ISPRS Journal of Photogrammetry and Remote Sensing | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 144 | ||||||||||||||||
DOI: | 10.1016/j.isprsjprs.2018.07.007 | ||||||||||||||||
Seitenbereich: | Seiten 285-297 | ||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||
ISSN: | 0924-2716 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | TanDEM-X, Cartosat-1, neural networks | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung | ||||||||||||||||
Hinterlegt von: | Häberle, Matthias | ||||||||||||||||
Hinterlegt am: | 05 Dez 2017 10:27 | ||||||||||||||||
Letzte Änderung: | 08 Nov 2023 10:42 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags