Merkle, Nina und Fischer, Peter und Auer, Stefan und Müller, Rupert (2017) On the Possibility of Conditional Adversarial Networks for Multi-Sensor Image Matching. In: Proceedings of IGARSS 2017, Seiten 1-4. IGARSS 2017, 2017-07-23 - 2017-07-28, Fort Worth, Texas, USA. doi: 10.1109/igarss.2017.8127535.
PDF
1MB |
Kurzfassung
A major research area in remote sensing is the problem of multi-sensor data fusion. Especially the combination of images acquired by different sensor types, e.g. active and passive, is a difficult task. Over the last years deep learning methods have proven their high potential for remote sensing applications. In this paper we will show how a deep learning method can be valuable for the problem of optical and SAR image matching. We investigate the possible of conditional generative adversarial networks (cGANs) for the generation of artificial templates. Contrary to common template generation approaches for image matching, the generation of templates using cGANs doesn't require the extraction of features. Our results show the possibility of realistic SAR-like template generation from optical images through cGANs and the potential of these templates for enhancing the matching of optical and SAR images by means of reliability and accuracy.
elib-URL des Eintrags: | https://elib.dlr.de/115795/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | On the Possibility of Conditional Adversarial Networks for Multi-Sensor Image Matching | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | Januar 2017 | ||||||||||||||||||||
Erschienen in: | Proceedings of IGARSS 2017 | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
DOI: | 10.1109/igarss.2017.8127535 | ||||||||||||||||||||
Seitenbereich: | Seiten 1-4 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | conditional GANs, deep learning, image matching, multi-sensor, template generation | ||||||||||||||||||||
Veranstaltungstitel: | IGARSS 2017 | ||||||||||||||||||||
Veranstaltungsort: | Fort Worth, Texas, USA | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 23 Juli 2017 | ||||||||||||||||||||
Veranstaltungsende: | 28 Juli 2017 | ||||||||||||||||||||
Veranstalter : | IEEE GRSS | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||||||
Hinterlegt von: | Merkle, Nina | ||||||||||||||||||||
Hinterlegt am: | 23 Nov 2017 13:52 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:20 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags