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ABSTRACT

A major research area in remote sensing is the problem of
multi-sensor data fusion. Especially the combination of im-
ages acquired by different sensor types, e.g. active and pas-
sive, is a difficult task. Over the last years deep learning
methods have proven their high potential for remote sensing
applications. In this paper we will show how a deep learn-
ing method can be valuable for the problem of optical and
SAR image matching. We investigate the possible of condi-
tional generative adversarial networks (cGANs) for the gen-
eration of artificial templates. Contrary to common template
generation approaches for image matching, the generation of
templates using cGANs does not require the extraction of fea-
tures. Our results show the possibility of realistic SAR-like
template generation from optical images through cGANs and
the potential of these templates for enhancing the matching of
optical and SAR images by means of reliability and accuracy.

Index Terms— conditional GANs, deep learning, image
matching, multi-sensor, artificial template generation

1. INTRODUCTION

More and more research studies successfully apply deep
learning methods to remote sensing problems, like classifica-
tion of hyperspectral [1] or SAR images [2], the enhancement
of road maps [3], or the usage of a deep matching network for
the task of aerial image matching [4]. These studies show the
opportunities given by the development of deep learning for
remote sensing problems. One major topic in remote sens-
ing is the matching and fusion of multi-sensor data. Finding
corresponding and reliable features in different data sources
is a difficult task. Previous works like [5], show promising
results concerning the problem of optical and SAR image
matching through templates. The drawback of such template
based approaches is the need for extracting a suitable number
of features, for instance the geometry of man-made infras-
tructure like intersection or a roundabout. In this paper, we
investigate an approach for a general generation of templates.
More precisely, we investigate the generation of SAR-like
templates from optical image through conditional adversarial
networks.

Generative adversarial networks (GANs) were introduced by
Goodfellow et al. [6]. The original idea of GANs was the es-
timation of generative models through an adversarial process.
An interesting development of GANs is shown by Isola et al.
[7]. They present a solution for image-to-image translation
problems based on conditional GANs (cGANs). Our tem-
plate generation method is based on this idea and the neural
network introduced in [7]. Our aim is to generate templates
with geometric properties from an input image and having
the simulated style/radiometric properties from a reference
image. A possible application for these artificial templates is
the problem of SAR and optical image matching.

2. METHODOLOGY

Our proposed strategy for the application of cGANs to SAR
and optical image matching is: (1) find a patch I in the op-
tical image, which contains salient features, (2) pre-process
I , (3) generate the template T from I with a cGAN, (4) use
a similarity measure like normalized cross-correlation (NCC)
or a feature detection approach like the scale-invariant feature
transform (SIFT) for the matching of the template T with the
reference image R.

2.1. Patch Extraction

Due to different radiometric and geometric properties of SAR
and optical sensors, the detection of reliable features and
the establishment of a suitable transfer function for compar-
ing features between both image modalities is a non-trivial
task. Features with a certain height, like buildings, might
have a different appearance in SAR and optical images. For
the SAR-like template generation, the optical patches should
contain planar objects, which have at least to a certain degree
the same geometric appearance as in the corresponding SAR
patches. Suitable features are in most cases man-made infras-
tructure objects, e.g. streets and street crossings, roundabouts
or runways. For limiting the search space in the image, the
optical image patches which contain such features are pre-
selected from areas where the CORINE land cover layer [8]
indicates the existence of fitting patterns. To ensure that only
patches are selected, which contain features visible in the
optical and SAR patches and to exclude patches containing
small villages, the pre-selection was refined manually.



Fig. 1. Side by side comparison between optical, artificial SAR and original (despeckled) SAR images in two columns.

2.2. Patch Preprocessing

The appearance of speckle in SAR images has a strong in-
fluence on common matching approaches between SAR and
optical images. Therefore, we investigate the generation of
despeckled SAR templates T . For the despeckling, the non-
local SAR filter proposed in [9] was applied.

2.3. Artificial Template Generation

A generative adversarial network (GANs) consists of a gener-
ator network G and, its counterpart, a discriminator network
D. The generator G is trained to generate images from ran-
dom noise. More specific, G is trained to learn the mapping
from a random vector z to an output image y. The discrimina-
tor D is a classification network and is trained to distinguish
between real images and images generated by G. G tries to
generate as realistic images as possible to fool D. Condi-
tional GANs use, next to the input z, an observed image x.
The overall aim is to optimize the cGAN loss

min
G

max
D
LcGAN(G,D) = Ex,y∼pdata(x,y)[logD(x, y)]+

Ex,y∼pdata(x,y),z∼pz(z)[log(1−D(x,G(x, z)))],
(1)

where E denotes the expected value. In our case x is an opti-
cal image patch, y the corresponding SAR patch (the ground
truth image) andG(x, z) a SAR-like template. G tries to min-
imize the loss LcGAN and foolD as often as possible, whereby
D tries to maximize the loss and detect as many fake images
(generated by G) as possible. Isola et al. [7] suggest to in-
clude an additional term to the loss LcGAN, to force D to pro-
duce output images, which are close to the ground truth im-
ages y (in sense of the L1 distance). Adding this term, the
final objective is

G∗ = arg min
G

max
D
LcGAN(G,D) + λLL1

(G), (2)

where the term LL1
is defined as

LL1
(G) = Ex,y∼pdata(x,y),z∼pz(z)[‖y −G(x, z)‖1]. (3)

For a detailed description of GANs see [6] and for a detailed
overview of the network architecture see [7].

The network is trained on pairs of optical and SAR image
patches with a size of 201× 201. As in [7] we use mini-batch
stochastic gradient descent with an alternated and separated
training of G and D. Particularly, one gradient descent step
of G is followed by one gradient descent step of D. Through
the optimization of the objective function during training, the
network is able to learn how to generate SAR-like templates
from optical image patches. The network implementation is
realized through the open source code to the paper [7].

2.4. Template Matching

One possibility to match the generated template with the cor-
responding reference image is to use a similarity measure. In
this paper the applicability of NCC is investigated, where the
similarity between a template T and the corresponding refer-
ence image R at location (m,n) is defined as

ρ(m,n)=

∑
x,y

(R(m+x, n+y)−R)(T (x, y)−T )√∑
x,y

(R(m+x, n+y)−R)2(T (x, y)−T )2
. (4)

Here, R(m+x, n+ y) and T (x, y) are the intensity values at
position (x, y) and R and T are the mean intensity values of
the image patches R and the T . In our case, T is a generated
SAR-like template with sizeN×N andR the reference patch
cropped from the SAR image with size (N + 2 ∗∆x)× (N +
2 ∗ ∆y), where ∆x and ∆y is the search space in x- and y-
direction. The NCC is calculated for all possible positions of
T within the larger patch R. The position with the highest
NCC value is the position with the best match between T and
R. To improve the result of the described matching procedure,
the score of Equation (4) can be use to remove outliers, e.g
consider only points as valid matching points with a score of
0.5 or higher. Furthermore, the usage of a hybrid evolutionary
algorithm enables to lower the computational cost and, hence,
speed up the template matching without loss in accuracy.



Fig. 2. Side by side comparison between SAR, artificial optical and original optical images in two columns.

Feature-based approaches provide a further possibility to
match the artificial templates with the reference images. The
key stage of a feature-based approach is the detection of reli-
able and corresponding features in the artificial template and
reference SAR image. In section 4 we will provide some first
results, where SIFT and BRISK was utilized to detect and
match features from T and R. At the end, RANSAC was ap-
plied to increase the quality of the obtained matching points
and to estimate the shift between T and R.

3. DATASET

To train and test the cGANs, we generated a dataset out of 46
orthorectified optical (PRISM) and radar (TerraSAR-X) satel-
lite image pairs. The images have been acquired over 13 cities
in Europe and cover greater urban zones including suburban,
industrial and rural areas. The pixel spacing of the PRISM
images is 2.5m. To be consistent with the optical images, we
used bilinear interpolation to resample the spatial resolution
of the TerraSAR-X images from 1.25m to 2.5m. The optical
and the SAR image pairs were manually aligned within the
Urban Atlas project [10] and have an overall alignment error
of around 3m. The training dataset consists of 69, 990 and the
test dataset of 5, 171 pairs of optical and SAR patches. All
training and test patches are semi-manually extracted from
specific areas in the images (as described in Subsection 2.1).
The applied CORINE land cover layer has a pixel size of
100m and is from the year 2012.

4. EXPERIMENTAL EVALUATION

4.1. Artificial Template Generation

Our results of the template generation through cGANs can be
seen in Figures 1-2. All figures show examples of test patches,
which are never shown to the network during training. Fig-
ure 1 shows a side by side comparison of optical patches, the
generated SAR-like templates and the original (despeckled)
SAR patches. The examples prove that the geometric struc-
ture of streets (crossings) from the optical images is preserved
in the generated templates. Furthermore, the templates show
radiometric properties of SAR or despeckled SAR images.
The cGAN learned that in contrast to optical images, streets
normally appear with a lower intensity in SAR images. The
network also tries to represent the characteristics of speckle
or the resulting pattern from the speckle filter.

We also trained the network to generate optical templates
from SAR images. The results can be seen in Figure 2. Since
optical images reveal a higher level of detail as SAR images,
the generation of artificial optical templates, is more difficult.
Furthermore, the extraction of features from SAR images is
more difficult. Particularly with regard to the aim of matching
optical and SAR images, where it is important to preserved
image features as good as possible, our focus is on the SAR-
like template generation.

4.2. Template Matching

We investigated the applicability of the generated templates
for optical and SAR image matching. A qualitative compar-
ison of the matching between optical and SAR patches, and
generated templates and SAR patches through NCC is illus-
trated in Figure 3. The patch size is 201×201 and the search
space is ∆x =∆y =20 pixels in each direction. The used tem-
plates are generated by using only the L1 loss from Equation
(3) to train the network. The correct matching positions are in
the center of the SAR patches. A bright color in the score map
is related to a high NCC value. The examples emphasize that
the generated SAR-like templates can improve the matching
between SAR and optical images through NCC. To confirm
this assumption a quantitative evaluation of the matching re-
sults is depicted in Table 1. Here, we investigated the influ-
ence of the templates in the matching accuracy and precision.
The numbers are computed from the obtained matching points
with a similarity score higher than 0.5 (122 matches with orig-
inal images vs. 193 matches with templates). The match-
ing accuracy is measured through the percentage of matching
points, where the L2 distance to the ground truth location is
less than 3 pixels and the average L2 distance. The matching
precision is measured through the standard deviation σ.

We further evaluated our first results of a featured-based
matching approach using SIFT and BRISK in combination
with RANSAC on one image from our test data. We used
RANSAC to remove outliers and to get a predicted shift be-
tween the SAR and optical patches. By applying SIFT and
RANSAC we obtained 24 matches out of 1710 patches and
an estimated shift (in pixel units) of 2.63 in x- and 16.84
in y-direction between the optical and SAR patches, and 15
matches and an estimated shift of 3.48 in x- and −1.78 in y-
direction between the templates and the SAR images (correct
shift: x= 0 and y= 0). Applying BRISK and RANSAC led



Fig. 3. Comparison of the score maps between the NCC based matching of the optical image with the SAR image and the
generated template (from the optical image) with the despeckled SAR image (from top down and in two columns).

to 93 matches and an estimated shift of 1.82 in x- and −2.6
in y-direction between the optical and SAR images and 120
matches and an estimated shift of −0.42 in x− and −0.65 in
y-direction between the templates and the SAR images. Us-
ing the artificial templates significant improved the quality of
the results in both cases.

matching accuracy matching precision
Methods <3 pixels avg L2 σ

Original 44.26% 3.88 2.59
Template 84.46% 2.20 2.53

Table 1. Influence of the artificial template on the matching
accuracy and precision utilizing the similarity measure NCC.
The matching accuracy is measured through the percentage
of matching points, where the L2 distance to the ground truth
location is less than 3 pixels. The average L2 distances and
the standard deviation σ are measured in pixel.

5. CONCLUSION

In this paper the applicability of a deep learning method for
the generation of artificial templates from optical and SAR
images is presented. Furthermore, the possibility of using
such templates for the problem of optical and SAR image
matching is evaluated. The essential part of the method is
the artificial template generation from optical images by ap-
plying a conditional adversarial network. This network en-
ables the generation of templates without any need of a prior
extraction of features. A possible application of the template
generation through cGANs is the problem of optical and SAR
image matching. We reveal the successful application of ar-
tificial SAR-like templates (generated from optical images)
to improve the matching accuracy between optical and SAR
images. The matching accuracy enhancement is shown for
similarity- and feature-based approaches. In the future, the
applicability to feature-based matching approaches like SIFT
or BRISK will be further investigated on a larger test dataset.
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and S. Schmuck, “Urban Atlas - DLR Processing Chain
for Orthorectification of Prism and AVNIR-2 Images and
TerraSAR-X as possible GCP Source,” Internet Proceedings:
3rd ALOS PI Symposium, pp. 1–6, Jan 2010.


