Karami, Omid and Fallah, Asghar and Shataee, Shaban and Latifi, Hooman (2017) Investigation on the feasibility of mapping of oak forest dieback severity using Worldview-2 satellite data (Case study: Ilam forests). Iranian Journal of Forest and Poplar Research, 25 (3), pp. 452-462. ISSN 1735-0883.
Full text not available from this repository.
Official URL: http://ijfpr.areeo.ac.ir/article_112879.html
Abstract
"In recent years, oak decline phenomenon has caused severe damages in Zagros forests. To deal with and managed this crisis, prior to any action, having accurate Information about the status and distribution area of this phenomena is necessary. Using satellite data is one of methods to achieve information on the extent and severity of die back. For this purpose, map of oak decline severity was prepared in four levels for some parts of Ilam forests using Worldview-2 satellite data. Maximum likelihood, naive bayes, Knearest neighbors and artificial neural network classification algorithm were used. The results showed that among different classification methods, the results of artificial neural network classification algorithm had most overall accuracy with 72.83%. Moreover, our results confirmed that the Worldview-2 satellite data can illustrate the severity of oak decline."
Item URL in elib: | https://elib.dlr.de/115525/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||
Title: | Investigation on the feasibility of mapping of oak forest dieback severity using Worldview-2 satellite data (Case study: Ilam forests) | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 2017 | ||||||||||||||||||||
Journal or Publication Title: | Iranian Journal of Forest and Poplar Research | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||
Volume: | 25 | ||||||||||||||||||||
Page Range: | pp. 452-462 | ||||||||||||||||||||
ISSN: | 1735-0883 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Artificial neural network, oak decline, remote sensing | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Geoscientific remote sensing and GIS methods | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | German Remote Sensing Data Center | ||||||||||||||||||||
Deposited By: | Wöhrl, Monika | ||||||||||||||||||||
Deposited On: | 21 Nov 2017 13:35 | ||||||||||||||||||||
Last Modified: | 19 Nov 2021 20:36 |
Repository Staff Only: item control page