Xia, Junshi und Ghamisi, Pedram und Yokoya, Naoto und Iwasaki, Akira (2018) Random Forest Ensembles and Extended Multi-Extinction Profiles for Hyperspectral Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 56 (1), Seiten 202-216. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2017.2744662. ISSN 0196-2892.
PDF
3MB |
Offizielle URL: http://ieeexplore.ieee.org/document/8046025/
Kurzfassung
Classification techniques for hyperspectral images based on random forest (RF) ensembles and extended multiextinction profiles (EMEPs) are proposed as a means of improving performance. To this end, five strategies--bagging, boosting, random subspace, rotation-based, and boosted rotation-based--are used to construct the RF ensembles. EPs, which are based on an extrema-oriented connected filtering technique, are applied to the images associated with the first informative components extracted by independent component analysis, leading to a set of EMEPs. The effectiveness of the proposed method is investigated on two benchmark hyperspectral images: the University of Pavia and Indian Pines. Comparative experimental evaluations reveal the superior performance of the proposed methods, especially those employing rotation-based and boosted rotation-based approaches. An additional advantage is that the CPU processing time is acceptable.
elib-URL des Eintrags: | https://elib.dlr.de/115365/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Random Forest Ensembles and Extended Multi-Extinction Profiles for Hyperspectral Image Classification | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | Januar 2018 | ||||||||||||||||||||
Erschienen in: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 56 | ||||||||||||||||||||
DOI: | 10.1109/TGRS.2017.2744662 | ||||||||||||||||||||
Seitenbereich: | Seiten 202-216 | ||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Ensemble learning, Extended multi-extinction profiles (EMEPs), Hyperspectral Image Classification, Random Forest (RF). | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung | ||||||||||||||||||||
Hinterlegt von: | Ghamisi, Pedram | ||||||||||||||||||||
Hinterlegt am: | 17 Nov 2017 15:05 | ||||||||||||||||||||
Letzte Änderung: | 31 Jul 2019 20:12 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags