Rasti, Behnood und Ghamisi, Pedram und Plaza, Javier und Plaza, Antonio (2017) Fusion of Hyperspectral and LiDAR Data Using Sparse and Low-Rank Component Analysis. IEEE Transactions on Geoscience and Remote Sensing, 55 (11), Seiten 6354-6365. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2017.2726901. ISSN 0196-2892.
PDF
12MB |
Offizielle URL: http://ieeexplore.ieee.org/document/8000656/
Kurzfassung
The availability of diverse data captured over the same region makes it possible to develop multisensor data fusion techniques to further improve the discrimination ability of classifiers. In this paper, a new sparse and low-rank technique is proposed for the fusion of hyperspectral and light detection and ranging (LiDAR)-derived features. The proposed fusion technique consists of two main steps. First, extinction profiles are used to extract spatial and elevation information from hyperspectral and LiDAR data, respectively. Then, the sparse and low-rank technique is utilized to estimate the low-rank fused features from the extracted ones that are eventually used to produce a final classification map. The proposed approach is evaluated over an urban data set captured over Houston, USA, and a rural one captured over Trento, Italy. Experimental results confirm that the proposed fusion technique outperforms the other techniques used in the experiments based on the classification accuracies obtained by random forest and support vector machine classifiers. Moreover, the proposed approach can effectively classify joint LiDAR and hyperspectral data in an ill-posed situation when only a limited number of training samples are available.
elib-URL des Eintrags: | https://elib.dlr.de/115362/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Fusion of Hyperspectral and LiDAR Data Using Sparse and Low-Rank Component Analysis | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 3 August 2017 | ||||||||||||||||||||
Erschienen in: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 55 | ||||||||||||||||||||
DOI: | 10.1109/TGRS.2017.2726901 | ||||||||||||||||||||
Seitenbereich: | Seiten 6354-6365 | ||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Extinction profiles (EPs), feature fusion, hyperspectral, light detection and ranging (LiDAR), sparse and low-rank component analysis (SLRCA) | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung | ||||||||||||||||||||
Hinterlegt von: | Ghamisi, Pedram | ||||||||||||||||||||
Hinterlegt am: | 17 Nov 2017 14:59 | ||||||||||||||||||||
Letzte Änderung: | 08 Nov 2023 15:06 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags