elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Detecting social groups from space - Assessment of remote sensing-based mapped morphological slums using income data

Wurm, Michael und Taubenböck, Hannes (2018) Detecting social groups from space - Assessment of remote sensing-based mapped morphological slums using income data. Remote Sensing Letters, 9 (1), Seiten 41-50. Informa Ltd. doi: 10.1080/2150704X.2017.1384586. ISSN 2150-704X.

[img] PDF
869kB

Offizielle URL: http://www.tandfonline.com/doi/full/10.1080/2150704X.2017.1384586

Kurzfassung

Over the last decades, massive urbanization processes lead to the emergence of large slum areas making them home to about a seventh of the global population. Although the variety of morphological characteristics varies significantly within as well as across cities, common determinants exist. Informal, or unplanned settlements in particular, do show similar morphologies over the world. They are characterized mostly by extremely high building densities and small building sizes, irregular arrangement of buildings and street network and are often located at exposed sites . Based on these characteristics, we deploy satellite images for a systematic mapping of morphological slum areas in the city of Rio de Janeiro, Brazil based solely on physical characteristics and analyse the mapping result with the official census data. Outcomes show first that morphological slums are a semantic and spatial sub-group of all slum areas contained by the Brazilian census and that remote sensing-based mapping yields accuracies of almost 94%. Second, analysis of census-based income data proofs that while almost 45% of all mapped slum blocks are characterized by incomes below the poverty line, as defined by the Organisation for Economic Co-operation and Development (OECD), this holds true for only about 6% of the formal urban neighbourhoods.

elib-URL des Eintrags:https://elib.dlr.de/114952/
Dokumentart:Zeitschriftenbeitrag
Titel:Detecting social groups from space - Assessment of remote sensing-based mapped morphological slums using income data
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Wurm, Michaelmichael.wurm (at) dlr.dehttps://orcid.org/0000-0001-5967-1894NICHT SPEZIFIZIERT
Taubenböck, Hanneshannes.taubenboeck (at) dlr.dehttps://orcid.org/0000-0003-4360-9126NICHT SPEZIFIZIERT
Datum:Januar 2018
Erschienen in:Remote Sensing Letters
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:9
DOI:10.1080/2150704X.2017.1384586
Seitenbereich:Seiten 41-50
Verlag:Informa Ltd
ISSN:2150-704X
Status:veröffentlicht
Stichwörter:slums, informal settlements, favela, Rio de Janeiro, classification, household income, census
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Fernerkundung u. Geoforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit
Hinterlegt von: Wurm, Michael
Hinterlegt am:09 Nov 2017 09:48
Letzte Änderung:02 Nov 2023 12:05

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.