Franz, Thomas und Zimmermann, Ralf und Görtz, Stefan (2017) Adaptive sampling for nonlinear dimensionality reduction based on manifold learning. In: Model Reduction of Parametrized Systems Springer. Seiten 255-269. doi: 10.1007/978-3-319-58786-8_16. ISBN 978-3-319-58785-1.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://doi.org/10.1007/978-3-319-58786-8_16
Kurzfassung
We make use of the non-intrusive dimensionality reduction method Isomap in order to emulate nonlinear parametric flow problems that are governed by the Reynolds-averaged Navier-Stokes equations. Isomap is a manifold learning approach that provides a low-dimensional embedding space that is approximately isometric to the manifold that is assumed to be formed by the high-fidelity Navier-Stokes flow solutions under smooth variations of the inflow conditions. The focus of the work at hand is the adaptive construction and refinement of the Isomap emulator: We exploit the non-Euclidean Isomap metric to detect and fill up gaps in the sampling in the embedding space. The performance of the proposed manifold filling method will be illustrated by numerical experiments, where we consider nonlinear parameter-dependent steady-state Navier-Stokes flows in the transonic regime.
elib-URL des Eintrags: | https://elib.dlr.de/114680/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Beitrag in einem Lehr- oder Fachbuch | ||||||||||||||||
Titel: | Adaptive sampling for nonlinear dimensionality reduction based on manifold learning | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2017 | ||||||||||||||||
Erschienen in: | Model Reduction of Parametrized Systems | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
Band: | 16 | ||||||||||||||||
DOI: | 10.1007/978-3-319-58786-8_16 | ||||||||||||||||
Seitenbereich: | Seiten 255-269 | ||||||||||||||||
Verlag: | Springer | ||||||||||||||||
ISBN: | 978-3-319-58785-1 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Adaptive Sampling, Reduced Order Models, Manifold Learning, Isomap | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||
HGF - Programmthema: | Flugzeuge | ||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | L AR - Aircraft Research | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Simulation und Validierung (alt) | ||||||||||||||||
Standort: | Braunschweig | ||||||||||||||||
Institute & Einrichtungen: | Institut für Aerodynamik und Strömungstechnik > CASE, BS | ||||||||||||||||
Hinterlegt von: | Franz, Thomas | ||||||||||||||||
Hinterlegt am: | 21 Nov 2017 11:25 | ||||||||||||||||
Letzte Änderung: | 05 Nov 2020 11:33 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags