elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Sparse Bayesian Learning with Dictionary Refinement for Super-Resolution Through Time

Shutin, Dmitriy und Vexler, Boris (2017) Sparse Bayesian Learning with Dictionary Refinement for Super-Resolution Through Time. In: 2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP 2017). IEEE. 2017 IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2017-12-10 - 2017-12-13, Curacao, Dutch Antilles. doi: 10.1109/CAMSAP.2017.8313111.

[img] PDF - Nur DLR-intern zugänglich
145kB

Kurzfassung

This work proposes an extension of a sparse Bayesian learning with dictionary refinement (SBL-DR) algorithm for a super-resolution estimation of time-varying sparse signals. Such signals are represented as a superposition of unknown but fixed number of Dirac measures with a time-varying support; as such the signal is sparse at each moment of time yet locations of Dirac measures are allowed to vary. To recover such signals an optimization framework is proposed that combines SBL-DR techniques and a penalty term that imposes smoothness constraints on the support variations in time. In contrast to state-of-the-art approaches, which typically combine parameter estimation schemes with some tracking filters, the proposed approach leads to a single objective function that permits a joint recovery of a sparse superposition of time-varying functions (trajectories). A numerical algorithm for efficient optimization of the corresponding cost function is proposed and analyzed; its performance is compared to a Kalman Enhanced Super-resolution Tracking algorithm on an example of estimating parameters of time-varying multipath channels.

elib-URL des Eintrags:https://elib.dlr.de/114411/
Dokumentart:Konferenzbeitrag (Poster)
Titel:Sparse Bayesian Learning with Dictionary Refinement for Super-Resolution Through Time
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Shutin, Dmitriydmitriy.shutin (at) dlr.dehttps://orcid.org/0000-0002-6065-6453NICHT SPEZIFIZIERT
Vexler, Borisvexler (at) ma.tum.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:10 Dezember 2017
Erschienen in:2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP 2017)
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
DOI:10.1109/CAMSAP.2017.8313111
Verlag:IEEE
Status:veröffentlicht
Stichwörter:Sparse signal reconstruction, time-varying signals, sparse Bayesian learning, super-resolution
Veranstaltungstitel:2017 IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing
Veranstaltungsort:Curacao, Dutch Antilles
Veranstaltungsart:Workshop
Veranstaltungsbeginn:10 Dezember 2017
Veranstaltungsende:13 Dezember 2017
Veranstalter :IEEE Signal Processing Socienty
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Kommunikation und Navigation
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R KN - Kommunikation und Navigation
DLR - Teilgebiet (Projekt, Vorhaben):R - Projekt Navigation 4.0 (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Kommunikation und Navigation > Nachrichtensysteme
Hinterlegt von: Shutin, Dmitriy
Hinterlegt am:08 Feb 2018 14:42
Letzte Änderung:24 Apr 2024 20:18

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.