Cao, Wenxi and Twele, Andre and Plank, Simon Manuel and Martinis, Sandro (2017) A Three-class Change Detection Methodology for SAR-data based on Hypothesis Testing and Markov Random Field Modeling. International Journal of Remote Sensing, 39 (2), pp. 488-504. Taylor & Francis. doi: 10.1080/01431161.2017.1384590. ISSN 0143-1161.
Full text not available from this repository.
Official URL: http://www.tandfonline.com/doi/abs/10.1080/01431161.2017.1384590
Abstract
This study presents a new automatic change detection process chain based on bi-temporal co-registered and calibrated Sentinel-1 level-1 Interferometric Wide (IW) Ground Range Detected (GRD) C-band Synthetic Aperture Radar (SAR) intensity imagery. The whole processor contains three main components: Firstly, a prepro- cessing step is used to perform geometrical and radiometrical calibration. Secondly, an automatic coarse detection step is applied based on a statistical hypothesis test to obtain an initial classifcation. Thirdly, a post-classifcation step is introduced to optimise the initial classifcation result in the form of minimising a global energy function de�ned on a Markov Random Field (MRF). In this study, a graph-cut algorithm is applied iteratively to solve the global optimisation problem. At each iteration, the data energy function for the current classification are set by the logarithmic probability density function (PDF). The relevant parameters are estimated by the method of logarithmic cumulants (MoLC). An appendix is presented at the end to explain the formulae used in this study. Experiments are performed using a good event which occurred in 2015 along the coastline of Greece near Kavala region and the Evros River at the border between Greece and Turkey. The proposed method shows a satisfying classifcation result with overall accuracy above 95% and kappa coefcient (�) above 0.87.
Item URL in elib: | https://elib.dlr.de/114408/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||
Title: | A Three-class Change Detection Methodology for SAR-data based on Hypothesis Testing and Markov Random Field Modeling | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 2017 | ||||||||||||||||||||
Journal or Publication Title: | International Journal of Remote Sensing | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||
Volume: | 39 | ||||||||||||||||||||
DOI: | 10.1080/01431161.2017.1384590 | ||||||||||||||||||||
Page Range: | pp. 488-504 | ||||||||||||||||||||
Publisher: | Taylor & Francis | ||||||||||||||||||||
ISSN: | 0143-1161 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Synthetic Aperture Radar (SAR), Disaster Monitoring, Markov Random Field (MRF), and Sentinel-1 | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Remote Sensing and Geo Research | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | German Remote Sensing Data Center > Geo Risks and Civil Security | ||||||||||||||||||||
Deposited By: | Cao, Wenxi | ||||||||||||||||||||
Deposited On: | 28 Sep 2017 14:09 | ||||||||||||||||||||
Last Modified: | 03 Nov 2023 14:04 |
Repository Staff Only: item control page