elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

A Three-class Change Detection Methodology for SAR-data based on Hypothesis Testing and Markov Random Field Modeling

Cao, Wenxi und Twele, Andre und Plank, Simon Manuel und Martinis, Sandro (2017) A Three-class Change Detection Methodology for SAR-data based on Hypothesis Testing and Markov Random Field Modeling. International Journal of Remote Sensing, 39 (2), Seiten 488-504. Taylor & Francis. doi: 10.1080/01431161.2017.1384590. ISSN 0143-1161.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: http://www.tandfonline.com/doi/abs/10.1080/01431161.2017.1384590

Kurzfassung

This study presents a new automatic change detection process chain based on bi-temporal co-registered and calibrated Sentinel-1 level-1 Interferometric Wide (IW) Ground Range Detected (GRD) C-band Synthetic Aperture Radar (SAR) intensity imagery. The whole processor contains three main components: Firstly, a prepro- cessing step is used to perform geometrical and radiometrical calibration. Secondly, an automatic coarse detection step is applied based on a statistical hypothesis test to obtain an initial classifcation. Thirdly, a post-classifcation step is introduced to optimise the initial classifcation result in the form of minimising a global energy function de�ned on a Markov Random Field (MRF). In this study, a graph-cut algorithm is applied iteratively to solve the global optimisation problem. At each iteration, the data energy function for the current classification are set by the logarithmic probability density function (PDF). The relevant parameters are estimated by the method of logarithmic cumulants (MoLC). An appendix is presented at the end to explain the formulae used in this study. Experiments are performed using a good event which occurred in 2015 along the coastline of Greece near Kavala region and the Evros River at the border between Greece and Turkey. The proposed method shows a satisfying classifcation result with overall accuracy above 95% and kappa coefcient (�) above 0.87.

elib-URL des Eintrags:https://elib.dlr.de/114408/
Dokumentart:Zeitschriftenbeitrag
Titel:A Three-class Change Detection Methodology for SAR-data based on Hypothesis Testing and Markov Random Field Modeling
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Cao, WenxiWenxi.Cao (at) dlr.dehttps://orcid.org/0000-0001-9567-3053NICHT SPEZIFIZIERT
Twele, AndreAndre.Twele (at) dlr.dehttps://orcid.org/0000-0002-8035-2625NICHT SPEZIFIZIERT
Plank, Simon ManuelSimon.Plank (at) dlr.dehttps://orcid.org/0000-0002-5793-052XNICHT SPEZIFIZIERT
Martinis, Sandrosandro.martinis (at) dlr.dehttps://orcid.org/0000-0002-6400-361XNICHT SPEZIFIZIERT
Datum:2017
Erschienen in:International Journal of Remote Sensing
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:39
DOI:10.1080/01431161.2017.1384590
Seitenbereich:Seiten 488-504
Verlag:Taylor & Francis
ISSN:0143-1161
Status:veröffentlicht
Stichwörter:Synthetic Aperture Radar (SAR), Disaster Monitoring, Markov Random Field (MRF), and Sentinel-1
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Fernerkundung u. Geoforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit
Hinterlegt von: Cao, Wenxi
Hinterlegt am:28 Sep 2017 14:09
Letzte Änderung:03 Nov 2023 14:04

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.