elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Appearance learning for 3D pose detection of a satellite at close-range

Oumer, Nassir W. und Kriegel, Simon und Ali, Haider und Reinartz, Peter (2017) Appearance learning for 3D pose detection of a satellite at close-range. ISPRS Journal of Photogrammetry and Remote Sensing, 125, Seiten 1-15. Elsevier. doi: 10.1016/j.isprsjprs.2017.01.002. ISSN 0924-2716.

[img] PDF
3MB

Offizielle URL: http://www.sciencedirect.com/science/article/pii/S0924271617300047

Kurzfassung

In this paper we present a learning-based 3D detection of a highly challenging specular object exposed to a direct sunlight at very close-range. An object detection is one of the most important areas of image processing, and can also be used for initialization of local visual tracking methods. While the object detection in 3D space is generally a difficult problem, it poses more difficulties when the object is specular and exposed to the direct sunlight as in a space environment. Our solution to a such problem relies on an appearance learning of a real satellite mock-up based on a vector quantization and the vocabulary tree. Our method, implemented on a standard computer (CPU), exploits a full perspective projection model and provides near real-time 3D pose detection of a satellite for close-range approach and manipulation. The time consuming part of the training (feature description, building the vocabulary tree and indexing, depth buffering and back-projection) are performed offline, while a fast image retrieval and 3D-2D registration are performed on-line. In contrast, the state of the art image-based 3D pose detection methods are slower on \{CPU\} or assume a weak perspective camera projection model. In our case the dimension of the satellite is larger than the distance to the camera, hence the assumption of the weak perspective model does not hold. To evaluate the proposed method, the appearance of a full scale mock-up of the rear part of the TerraSAR-X satellite is trained under various illumination and camera views. The training images are captured with a camera mounted on six degrees of freedom robot, which enables to position the camera in a desired view, sampled over a sphere. The views that are not within the workspace of the robot are interpolated using image-based rendering. Moreover, we generate ground truth poses to verify the accuracy of the detection algorithm. The achieved results are robust and accurate even under noise due to specular reflection, and able to initialize a local tracking method.

elib-URL des Eintrags:https://elib.dlr.de/113120/
Dokumentart:Zeitschriftenbeitrag
Titel:Appearance learning for 3D pose detection of a satellite at close-range
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Oumer, Nassir W.nassir.oumer (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Kriegel, Simonsimon.kriegel (at) dlr.dehttps://orcid.org/0000-0003-4711-8527NICHT SPEZIFIZIERT
Ali, HaiderHaider.Ali (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Reinartz, Peterpeter.reinartz (at) dlr.dehttps://orcid.org/0000-0002-8122-1475NICHT SPEZIFIZIERT
Datum:März 2017
Erschienen in:ISPRS Journal of Photogrammetry and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:125
DOI:10.1016/j.isprsjprs.2017.01.002
Seitenbereich:Seiten 1-15
Verlag:Elsevier
ISSN:0924-2716
Status:veröffentlicht
Stichwörter:Satellite pose detection Pose estimation Pose initialization Appearance learning Feature clustering
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Technik für Raumfahrtsysteme
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R SY - Technik für Raumfahrtsysteme
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben Multisensorielle Weltmodellierung (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition
Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Hinterlegt von: Oumer, Nassir
Hinterlegt am:17 Jul 2017 13:17
Letzte Änderung:02 Nov 2023 14:48

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.