Chen, Yushi und Li, Chunyang und Ghamisi, Pedram und Jia, Xiuping und Gu, Yanfeng (2017) Deep Fusion of Remote Sensing Data for Accurate Classification. IEEE Geoscience and Remote Sensing Letters, 14 (8), Seiten 1253-1257. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2017.2704625. ISSN 1545-598X.
PDF
245kB |
Offizielle URL: http://ieeexplore.ieee.org/document/7940007/
Kurzfassung
The multisensory fusion of remote sensing data has obtained a great attention in recent years. In this letter, we propose a new feature fusion framework based on deep neural networks (DNNs). The proposed framework employs deep convolutional neural networks (CNNs) to effectively extract features of multi-/hyperspectral and light detection and ranging data. Then, a fully connected DNN is designed to fuse the heterogeneous features obtained by the previous CNNs. Through the aforementioned deep networks, one can extract the discriminant and invariant features of remote sensing data, which are useful for further processing. At last, logistic regression is used to produce the final classification results. Dropout and batch normalization strategies are adopted in the deep fusion framework to further improve classification accuracy. The obtained results reveal that the proposed deep fusion model provides competitive results in terms of classification accuracy. Furthermore, the proposed deep learning idea opens a new window for future remote sensing data fusion.
elib-URL des Eintrags: | https://elib.dlr.de/112797/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Deep Fusion of Remote Sensing Data for Accurate Classification | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | August 2017 | ||||||||||||||||||||||||
Erschienen in: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
Band: | 14 | ||||||||||||||||||||||||
DOI: | 10.1109/LGRS.2017.2704625 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 1253-1257 | ||||||||||||||||||||||||
Herausgeber: |
| ||||||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||
ISSN: | 1545-598X | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Convolutional neural network (CNN), data fusion, deep neural network (DNN), feature extraction (FE), multispectral image (MSI), hyperspectral image (HSI), light detection and ranging (LiDAR). | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung | ||||||||||||||||||||||||
Hinterlegt von: | Ghamisi, Pedram | ||||||||||||||||||||||||
Hinterlegt am: | 20 Jun 2017 15:50 | ||||||||||||||||||||||||
Letzte Änderung: | 31 Jul 2019 20:10 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags