Nottensteiner, Korbinian und Hertkorn, Katharina (2017) Constraint-based Sample Propagation for Improved State Estimation in Robotic Assembly. In: 2017 IEEE International Conference on Robotics and Automation, ICRA 2017. IEEE. IEEE International Conference on Robotics and Automation, 2017-05-29 - 2017-06-02, Singapore. doi: 10.1109/ICRA.2017.7989069. ISBN 978-150904633-1. ISSN 1050-4729.
PDF
- Nur DLR-intern zugänglich
5MB |
Offizielle URL: https://ieeexplore.ieee.org/document/7989069
Kurzfassung
In fast changing assembly scenarios, it is required to adapt the task execution to the current state of the setup without extensive calibration routines. Therefore, it is important to estimate the geometric uncertainties and contact states during the assembly execution. We use a sequential Monte Carlo (SMC) method to track the relative poses between workpieces during a robotic assembly based on joint torque and position measurements only. In contrast to existing approaches, we focus on assembly tasks where the workpiece is not fixed in the workcell, but can, for example, slide on a table surface. We propose a new constraint-based propagation model for the SMC approach: a compensation motion for the samples dependent on the violation of contact constraints is derived. This allows us to track the motion of the workpieces in cases where a common random diffusion model fails. The method is evaluated with experiments using an assembly scenario with two KUKA LBR iiwa robot arms and shows accurate tracking performance.
elib-URL des Eintrags: | https://elib.dlr.de/112690/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
Titel: | Constraint-based Sample Propagation for Improved State Estimation in Robotic Assembly | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 2017 | ||||||||||||
Erschienen in: | 2017 IEEE International Conference on Robotics and Automation, ICRA 2017 | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Nein | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Nein | ||||||||||||
DOI: | 10.1109/ICRA.2017.7989069 | ||||||||||||
Verlag: | IEEE | ||||||||||||
ISSN: | 1050-4729 | ||||||||||||
ISBN: | 978-150904633-1 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | sequential Monte Carlo, particle filter, robotics assembly, observation | ||||||||||||
Veranstaltungstitel: | IEEE International Conference on Robotics and Automation | ||||||||||||
Veranstaltungsort: | Singapore | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsbeginn: | 29 Mai 2017 | ||||||||||||
Veranstaltungsende: | 2 Juni 2017 | ||||||||||||
Veranstalter : | IEEE | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben Intelligente Mobilität (alt) | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Kognitive Robotik | ||||||||||||
Hinterlegt von: | Nottensteiner, Korbinian | ||||||||||||
Hinterlegt am: | 19 Jun 2017 11:35 | ||||||||||||
Letzte Änderung: | 24 Apr 2024 20:17 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags