Panin, Giorgio (2013) Fast, Multi-modal and Discontinuity-preserving Image Registration using Mutual Information. International Journal on Artificial Intelligence Tools, 22 (06). World Scientific Publishing Co. doi: 10.1142/S0218213013600154. ISSN 0218-2130.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: http://www.worldscientific.com/doi/abs/10.1142/S0218213013600154
Kurzfassung
In this paper, we describe a fast and efficient method for multi-modal and discontinuity-preserving image registration, implemented on graphics hardware. Multi-sensory data fusion and medical image analysis often pose the challenging task of aligning dense, non-rigid and multi-modal images. However, also optical sequences or stereo image pairs may present variable illumination conditions and noise. The above problems can be addressed by an invariant similarity measure, such as mutual information. Additionally, when using a regularized approach to deal with the ill-posedness of the problem, one has to take care of preserving discontinuities at the motion boundaries. Our approach efficiently addresses the above issues through a primal-dual convex estimation framework, using an approximated Hessian matrix that decouples pixel dependencies, while being asymptotically correct. At the same time, we achieve a high computational efficiency by means of pre-quantized kernel density estimation and differentiation, as well as a parallel implementation on the GPU. Our approach is demonstrated on ground-truth data from the Middlebury database, as well as medical and visible-infrared image pairs.
elib-URL des Eintrags: | https://elib.dlr.de/112567/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||
Titel: | Fast, Multi-modal and Discontinuity-preserving Image Registration using Mutual Information | ||||||||
Autoren: |
| ||||||||
Datum: | Dezember 2013 | ||||||||
Erschienen in: | International Journal on Artificial Intelligence Tools | ||||||||
Referierte Publikation: | Ja | ||||||||
Open Access: | Nein | ||||||||
Gold Open Access: | Nein | ||||||||
In SCOPUS: | Ja | ||||||||
In ISI Web of Science: | Ja | ||||||||
Band: | 22 | ||||||||
DOI: | 10.1142/S0218213013600154 | ||||||||
Verlag: | World Scientific Publishing Co | ||||||||
ISSN: | 0218-2130 | ||||||||
Status: | veröffentlicht | ||||||||
Stichwörter: | Image registration; multi-modal data; total variation; mutual information; convex optimization; general-purpose GPU computing | ||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||
HGF - Programm: | Raumfahrt | ||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben Multisensorielle Weltmodellierung (alt) | ||||||||
Standort: | Oberpfaffenhofen | ||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition | ||||||||
Hinterlegt von: | Strobl, Dr. Klaus H. | ||||||||
Hinterlegt am: | 12 Jun 2017 17:36 | ||||||||
Letzte Änderung: | 21 Nov 2023 07:01 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags