Hauslage, Jens and Cevik, Volkan and Hemmersbach, Ruth (2017) Pyrocystis noctiluca represents an excellent bioassay for shear forces induced in ground-based microgravity simulators (clinostat and random positioning machine). npj Microgravity, 3, p. 12. Nature Publishing Group. doi: 10.1038/s41526-017-0016-x. ISSN 2373-8065.
PDF
1MB |
Official URL: http://www.nature.com/articles/s41526-017-0016-x
Abstract
Ground-based facilities, such as clinostats and random positioning machines aiming at simulating microgravity conditions, are tools to prepare space experiments and identify gravity-related signaling pathways. A prerequisite is that the facilities are operated in an appropriate manner and potentially induced non-gravitational effects, such as shearing forces, have to be taken into account. Dinoflagellates, here P. noctiluca, as fast and sensitive reporter system for shear stress and hydrodynamic gradients, were exposed on a clinostat (constant rotation around one axis, 60 rpm) or in a random positioning machine, that means rotating around two axes, whose velocity and direction were chosen at random. Deformation of the cell membrane of P. noctiluca due to shear stress results in a detectable bioluminescence emission. Our results show that the amount of mechanical stress is higher on an random positioning machine than during constant clinorotation, as revealed by the differences in photon counts. We conclude that one axis clinorotation induced negligible non-gravitational effects in the form of shear forces in contrast to random operation modes tested. For the first time, we clearly visualized the device-dependent occurrence of shear forces by means of a bioassay, which have to be considered during the definition of an appropriate simulation approach and to avoid misinterpretation of results.
Item URL in elib: | https://elib.dlr.de/112031/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||
Title: | Pyrocystis noctiluca represents an excellent bioassay for shear forces induced in ground-based microgravity simulators (clinostat and random positioning machine) | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 24 April 2017 | ||||||||||||||||
Journal or Publication Title: | npj Microgravity | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | Yes | ||||||||||||||||
In SCOPUS: | No | ||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||
Volume: | 3 | ||||||||||||||||
DOI: | 10.1038/s41526-017-0016-x | ||||||||||||||||
Page Range: | p. 12 | ||||||||||||||||
Publisher: | Nature Publishing Group | ||||||||||||||||
ISSN: | 2373-8065 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | Biological techniques, Cell biology, Microgravity simulation | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Research under Space Conditions | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R FR - Research under Space Conditions | ||||||||||||||||
DLR - Research theme (Project): | R - Projekt :envihab (old), R - Vorhaben Biowissenschaftliche Exp.-vorbereitung (old), R - Project eu:cropis (old) | ||||||||||||||||
Location: | Köln-Porz | ||||||||||||||||
Institutes and Institutions: | Institute of Aerospace Medicine > Gravitational Biology | ||||||||||||||||
Deposited By: | Duwe, Helmut | ||||||||||||||||
Deposited On: | 18 May 2017 10:37 | ||||||||||||||||
Last Modified: | 02 Nov 2023 14:45 |
Repository Staff Only: item control page