elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Hyperspectral and LiDAR Fusion Using Extinction Profiles and Total Variation Component Analysis

Rasti, Behnood und Ghamisi, Pedram und Gloaguen, Richard (2017) Hyperspectral and LiDAR Fusion Using Extinction Profiles and Total Variation Component Analysis. IEEE Transactions on Geoscience and Remote Sensing, 55 (7), Seiten 3997-4007. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2017.2686450. ISSN 0196-2892.

[img] PDF - Nur DLR-intern zugänglich
13MB

Offizielle URL: http://ieeexplore.ieee.org/document/7902153/

Kurzfassung

The classification accuracy of remote sensing data can be increased by integrating ancillary data provided by multisource acquisition of the same scene. We propose to merge the spectral and spatial content of hyperspectral images (HSI) with elevation information from LIDAR measurements. In the present paper, we propose to fuse the datasets using Orthogonal Total Variation Component Analysis (OTVCA). Extinction profiles (EPs) are used to automatically extract spatial and Elevation information from HSI and rasterized LiDAR features. The extracted spatial and elevation information are then fused with spectral information using the OTVCA-based feature fusion method to produce the final classification map. The extracted features have high dimension and therefore OTVCA estimates the fused features in a lower dimensional space. OTVCA also promotes piece-wise smoothness while maintaining the spatial structures. Both attributes are important to provide homogeneous regions in the final classification maps. We benchmark the proposed approach (OTVCA-fusion) with an urban datasets captured over an urban area in Houston/USA and a rural region acquired in Trento/Italy. In the experiments, OTVCA-fusion is evaluated using random forest (RF) and support vector machines (SVM) classifiers. Our experiments demonstrate the ability of OTVCA-fusion to produce accurate classification maps while using fewer features compared to other approaches investigated in this study.

elib-URL des Eintrags:https://elib.dlr.de/112025/
Dokumentart:Zeitschriftenbeitrag
Titel:Hyperspectral and LiDAR Fusion Using Extinction Profiles and Total Variation Component Analysis
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Rasti, BehnoodKeilir Institute of TechnologyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Ghamisi, Pedramdlr-imf/tum-lmfNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Gloaguen, RichardHelmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource TechnologyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2017
Erschienen in:IEEE Transactions on Geoscience and Remote Sensing
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:55
DOI:10.1109/TGRS.2017.2686450
Seitenbereich:Seiten 3997-4007
Herausgeber:
HerausgeberInstitution und/oder E-Mail-Adresse der HerausgeberHerausgeber-ORCID-iDORCID Put Code
Plaza, Antonio J.aplaza (at) unex.esNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:0196-2892
Status:veröffentlicht
Stichwörter:Feature Fusion; Orthogonal Total Variation Component Analysis; Extinction Profiles; Random Forest; Support Vector Machines.
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben hochauflösende Fernerkundungsverfahren (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung
Hinterlegt von: Ghamisi, Pedram
Hinterlegt am:02 Mai 2017 13:46
Letzte Änderung:08 Mär 2018 18:35

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.