Pullanagari, Reddy und Kereszturi, Gabor und Yule, Ian und Ghamisi, Pedram (2017) Assessing the performance of multiple spectral–spatial features of a hyperspectral image for classification of urban land cover classes using support vector machines and artificial neural network. Journal of Applied Remote Sensing, 11 (2), Seiten 1-22. Society of Photo-optical Instrumentation Engineers (SPIE). doi: 10.1117/1.JRS.11.026009. ISSN 1931-3195.
PDF
1MB |
Offizielle URL: http://remotesensing.spiedigitallibrary.org/article.aspx?articleid=2623136
Kurzfassung
Accurate and spatially detailed mapping of complex urban environments is essential for land managers. Classifying high spectral and spatial resolution hyperspectral images is a challenging task because of its data abundance and computational complexity. Approaches witha combination of spectral and spatial information in a single classification framework haveattracted special attention because of their potential to improve the classification accuracy.We extracted multiple features from spectral and spatial domains of hyperspectral images and evaluated them with two supervised classification algorithms; support vector machines(SVM) and an artificial neural network. The spatial features considered are produced by agray level co-occurrence matrix and extended multiattribute profiles. All of these features were stacked, and the most informative features were selected using a genetic algorithm-based SVM. After selecting the most informative features, the classification model was integrated with a segmentation map derived using a hidden Markov random field. We tested the proposed method on a real application of a hyperspectral image acquired from AisaFENIX and on widely used hyperspectral images. From the results, it can be concluded that the proposed framework significantly improves the results with different spectral and spatial resolutions over different instrumentation.
elib-URL des Eintrags: | https://elib.dlr.de/112013/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Assessing the performance of multiple spectral–spatial features of a hyperspectral image for classification of urban land cover classes using support vector machines and artificial neural network | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2017 | ||||||||||||||||||||
Erschienen in: | Journal of Applied Remote Sensing | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 11 | ||||||||||||||||||||
DOI: | 10.1117/1.JRS.11.026009 | ||||||||||||||||||||
Seitenbereich: | Seiten 1-22 | ||||||||||||||||||||
Herausgeber: |
| ||||||||||||||||||||
Verlag: | Society of Photo-optical Instrumentation Engineers (SPIE) | ||||||||||||||||||||
ISSN: | 1931-3195 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | hyperspectral; classification; multiple features; gray level co-occurrence matrix;extended multiattribute profiles | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung | ||||||||||||||||||||
Hinterlegt von: | Ghamisi, Pedram | ||||||||||||||||||||
Hinterlegt am: | 26 Apr 2017 10:37 | ||||||||||||||||||||
Letzte Änderung: | 31 Jul 2019 20:09 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags