elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

SAR Image Feature Analysis for Slum Detection in Megacities

Weigand, Matthias (2017) SAR Image Feature Analysis for Slum Detection in Megacities. Masterarbeit, Universität Augsburg.

[img] PDF
12MB

Kurzfassung

Urban areas have undergone major changes in the last decades. Especially in developing countries, megacities with more than 10 million inhabitants have developed. The number of such huge urban agglomerations is predicted to rise to 41 until 2030. The increasing influx of urban dwellers inevitably leads to the formation of informal settlements with poor living conditions. Monitoring, analysis and mapping of slums are necessary to provide information about such settlements and thus tackle these increasing challenges. Therefore, SAR remote sensing images are used in this study for an extensive mapping of slums conducted in Mumbai, India. In a broad experimental setup textural and morphological features are analyzed for the slum discrimination in an urban landscape. Two state-of-the-art supervised classification algorithms are compared in the experiments. By utilizing an area-wide reference data set, detailed accuracy assessment techniques are applied to determine the classification quality. The results indicate that it is possible to classify the urban landscape by using textural image features with an Overall Accuracy of 88.58% utilizing a Random Forest classifier. However, lower class specific accuracies of the slum areas show that slum mapping remains challenging. A patch based accuracy assessment proves that it is most difficult to detect small slum areas in the urban landscape. Furthermore, an experimental feature reduction experiment indicates that more image features are needed to detect slums than to discriminate urban and non-urban landscapes.

elib-URL des Eintrags:https://elib.dlr.de/111835/
Dokumentart:Hochschulschrift (Masterarbeit)
Titel:SAR Image Feature Analysis for Slum Detection in Megacities
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Weigand, Matthiasmatthias.weigand (at) dlr.dehttps://orcid.org/0000-0002-5553-4152NICHT SPEZIFIZIERT
Datum:Februar 2017
Referierte Publikation:Nein
Open Access:Ja
Seitenanzahl:55
Status:veröffentlicht
Stichwörter:Slums, Informal Settlements, polSAR, Classification, Random Forests, Kennaugh Elements, Texture, Morphological Profiles
Institution:Universität Augsburg
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben Zivile Kriseninformation und Georisiken (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit
Hinterlegt von: Weigand, Matthias
Hinterlegt am:04 Jul 2017 10:44
Letzte Änderung:31 Jul 2019 20:09

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.