elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Waste Heat Driven Thermochemical Heat Transformation based on a Salt Hydrate

Stengler, Jana und Drexler, Marius und Linder, Marc (2017) Waste Heat Driven Thermochemical Heat Transformation based on a Salt Hydrate. International Renewable Energy Storage Conference IRES 2017, 2017-03-14 - 2017-03-16, Düsseldorf, Deutschland.

[img] PDF - Nur DLR-intern zugänglich
352kB

Kurzfassung

In the course of efforts to reduce primary energy consumption in chemical process industries, recovery of low enthalpy energy sources such as low temperature waste heat has come into the focus of interest. However, there is no heat pump commercially available yet that offers an output temperature of more than 140 °C, which is a minimum temperature required for many industrial applications. In this regard, thermochemical heat transformation based on gas-solid reactions can be used to generate a high temperature heat pump-like effect. The reversible reaction of strontium bromide with water vapor is proposed in this work for thermochemical heat transformation: SrBr2(s) + H2O(g) ⇌ SrBr2 x H2O(s) + ΔRH. Driven by 90 °C waste heat, this chemical reaction offers the possibility to “lift” process heat flows to a higher temperature level in the range of 180 °C to 230 °C. By variation of the partial pressure of water vapor, the equilibrium temperatures of the both the hydration and dehydration reaction can be controlled. Consequently, it is possible to conduct the exothermic reaction at a higher temperature than the endothermic reaction. Process heat which is stored in the form of chemical potential during the dehydration reaction can afterwards be recovered at a higher temperature during the hydration reaction. In the proposed process, water vapor supply is covered by low temperature waste heat. The resulting thermal upgrade of process heat allows to cut down on additional heating and thus leads to a reduced consumption of primary energy resources. The oral contribution will outline the thermodynamic principle of thermally driven heat transformation and its main difference to conventional heat pumps. In addition, the potential of the reactant couple SrBr2/H2O will be discussed based on experimental results from a lab-scale reactor setup.

elib-URL des Eintrags:https://elib.dlr.de/111562/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Waste Heat Driven Thermochemical Heat Transformation based on a Salt Hydrate
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Stengler, Janajana.stengler (at) dlr.dehttps://orcid.org/0000-0001-6124-8286NICHT SPEZIFIZIERT
Drexler, Mariusmarius.drexler (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Linder, Marcmarc.linder (at) dlr.dehttps://orcid.org/0000-0003-2218-5301NICHT SPEZIFIZIERT
Datum:16 März 2017
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:thermochemical energy storage, heat transformation, chemical heat pump, salt hydrate, waste heat recovery
Veranstaltungstitel:International Renewable Energy Storage Conference IRES 2017
Veranstaltungsort:Düsseldorf, Deutschland
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:14 März 2017
Veranstaltungsende:16 März 2017
HGF - Forschungsbereich:Energie
HGF - Programm:Speicher und vernetzte Infrastrukturen
HGF - Programmthema:Thermische Energiespeicher
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E EV - Energieverfahrenstechnik
DLR - Teilgebiet (Projekt, Vorhaben):E - Thermochemische Prozesse (Speicher) (alt)
Standort: Stuttgart
Institute & Einrichtungen:Institut für Technische Thermodynamik > Thermische Prozesstechnik
Hinterlegt von: Stengler, Jana
Hinterlegt am:21 Mär 2017 12:47
Letzte Änderung:24 Apr 2024 20:16

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.