Greiser, Steffen and Grünhagen, W. von (2016) Improving System Identification Results: Combining a Physics-Based Stitched Model with Transfer Function Models Obtained Through Inverse Simulation. AHS 72nd Annual Forum, 2016-05-17 - 2016-05-19, PalmBeach, Florida.
Full text not available from this repository.
Abstract
It is state-of-the-art to model helicopter dynamics by low-order equivalent linear systems at certain speed-dependent operating points for the flight envelope of interest. These models are obtained from flight test data by system identification. Based on the linear models, it is desired to simulate maneuvering flight such as acceleration and deceleration between hover and high forward-speed. Additionally, the identified operating point model should consist of a high modeling accuracy. Thus, the two modeling and simulation goals are: generation of a full-envelope simulation by embedding all linear models and improvement of the modeling accuracy at each operating point. These two goals stimulate the application of two techniques: model stitching and inverse simulation. Model stitching allows to implement a full-envelope quasi-nonlinear helicopter simulation whereas inverse simulation allows to analyze and model additional non-physical transfer functions that improve the linear model accuracy at a certain operating point. These transfer functions describe the remnants that are originally not considered by the system identification results. This paper presents the combination of the two techniques model stitching and inverse simulation as well as their application. Finally, the paper assesses the modeling accuracy for ACT/FHS flight test data.
Item URL in elib: | https://elib.dlr.de/111549/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||
Title: | Improving System Identification Results: Combining a Physics-Based Stitched Model with Transfer Function Models Obtained Through Inverse Simulation | ||||||||||||
Authors: |
| ||||||||||||
Date: | May 2016 | ||||||||||||
Refereed publication: | Yes | ||||||||||||
Open Access: | No | ||||||||||||
Gold Open Access: | No | ||||||||||||
In SCOPUS: | No | ||||||||||||
In ISI Web of Science: | No | ||||||||||||
Status: | Published | ||||||||||||
Keywords: | ACT/FHS, modeling, inverse Simulation, Parameter varying models, model stitching, System identification | ||||||||||||
Event Title: | AHS 72nd Annual Forum | ||||||||||||
Event Location: | PalmBeach, Florida | ||||||||||||
Event Type: | international Conference | ||||||||||||
Event Start Date: | 17 May 2016 | ||||||||||||
Event End Date: | 19 May 2016 | ||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||
HGF - Program: | Aeronautics | ||||||||||||
HGF - Program Themes: | rotorcraft | ||||||||||||
DLR - Research area: | Aeronautics | ||||||||||||
DLR - Program: | L RR - Rotorcraft Research | ||||||||||||
DLR - Research theme (Project): | L - The Smart Rotorcraft (old) | ||||||||||||
Location: | Braunschweig | ||||||||||||
Institutes and Institutions: | Institute of Flight Systems > Rotorcraft | ||||||||||||
Deposited By: | Greiser, Steffen | ||||||||||||
Deposited On: | 20 Mar 2017 13:54 | ||||||||||||
Last Modified: | 24 Apr 2024 20:16 |
Repository Staff Only: item control page