Leichtle, Tobias and Geiß, Christian and Wurm, Michael and Lakes, Tobia and Taubenböck, Hannes (2017) Evaluation of clustering algorithms for unsupervised change detection in VHR remote sensing imagery. In: 2017 Joint Urban Remote Sensing Event (JURSE), pp. 1-4. IEEE Xplore. Joint Urban Remote Sensing Event (JURSE) 2017, 2017-03-06 - 2017-03-08, Dubai, UAE. doi: 10.1109/JURSE.2017.7924625. ISBN 978-1-5090-5808-2.
This is the latest version of this item.
PDF
972kB |
Official URL: http://ieeexplore.ieee.org/document/7924625/
Abstract
Remote sensing has proven to be an adequate tool for observation of changes to the Earth’s surface. Especially modern space-borne sensors with very-high spatial resolution offer new capabilities for monitoring of dynamic urban environments. In this context, clustering is a well suited technique for unsupervised and thus highly automatic detection of changes. In this study, seven partitioning clustering algorithms from different methodological categories are evaluated regarding their suitability for unsupervised change detection. In addition, object-based feature sets of different characteristics are included in the analysis assessing their discriminative power for classification of changed against unchanged buildings. In general, the most important property of favorable algorithms is that they do not require additional arbitrary input parameters except the number of clusters. Best results were achieved based on the clustering algorithms k-means, partitioning around medoids, genetic k-means and self-organizing map clustering with accuracies in terms of κ statistics of 0.8 to 0.9 and beyond.
Item URL in elib: | https://elib.dlr.de/111485/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Poster) | ||||||||||||||||||||||||
Title: | Evaluation of clustering algorithms for unsupervised change detection in VHR remote sensing imagery | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | 2017 | ||||||||||||||||||||||||
Journal or Publication Title: | 2017 Joint Urban Remote Sensing Event (JURSE) | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||
DOI: | 10.1109/JURSE.2017.7924625 | ||||||||||||||||||||||||
Page Range: | pp. 1-4 | ||||||||||||||||||||||||
Publisher: | IEEE Xplore | ||||||||||||||||||||||||
Series Name: | 2017 Joint Urban Remote Sensing Event (JURSE) | ||||||||||||||||||||||||
ISBN: | 978-1-5090-5808-2 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | change detection; clustering; object-based image analysis; very-high resolution (VHR) remote sensing | ||||||||||||||||||||||||
Event Title: | Joint Urban Remote Sensing Event (JURSE) 2017 | ||||||||||||||||||||||||
Event Location: | Dubai, UAE | ||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||
Event Start Date: | 6 March 2017 | ||||||||||||||||||||||||
Event End Date: | 8 March 2017 | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Vorhaben Zivile Kriseninformation und Georisiken (old) | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | German Remote Sensing Data Center > Geo Risks and Civil Security German Remote Sensing Data Center > Land Surface | ||||||||||||||||||||||||
Deposited By: | Leichtle, Tobias | ||||||||||||||||||||||||
Deposited On: | 27 Mar 2017 14:37 | ||||||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:16 |
Available Versions of this Item
- Evaluation of clustering algorithms for unsupervised change detection in VHR remote sensing imagery. (deposited 27 Mar 2017 14:37) [Currently Displayed]
Repository Staff Only: item control page