elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

The Effects of HZE Particles, γ and X-ray Radiation on the Survival and Genetic Integrity of Halobacterium salinarum NRC-1, Halococcus hamelinensis, and Halococcus morrhuae

Leuko, Stefan and Rettberg, Petra (2017) The Effects of HZE Particles, γ and X-ray Radiation on the Survival and Genetic Integrity of Halobacterium salinarum NRC-1, Halococcus hamelinensis, and Halococcus morrhuae. Astrobiology, 17 (2), pp. 110-117. Mary Ann Liebert Inc.. doi: 10.1089/ast.2015.1458. ISSN 1531-1074.

Full text not available from this repository.

Official URL: http://online.liebertpub.com/doi/abs/10.1089/ast.2015.1458

Abstract

Three halophilic archaea, Halobacterium salinarum NRC-1, Halococcus hamelinensis, and Halococcus morrhuae, have been exposed to different regimes of simulated outer space ionizing radiation. Strains were exposed to high-energy heavy ion (HZE) particles, namely iron and argon ions, as well as to γ radiation (60Co) and X-rays, and the survival and the genetic integrity of the 16S rRNA gene were evaluated. Exposure to 1 kGy of argon or iron ions at the Heavy Ion Medical Accelerator in Chiba (HIMAC) facility at the National Institute for Radiological Sciences (NIRS) in Japan did not lead to a detectable loss in viability; only after exposure to 2 kGy of iron ions a decline in survival was observed. Furthermore, a delay in growth was manifested following exposure to 2 kGy iron ions. DNA integrity of the 16S rRNA was not compromised up to 1 kGy, with the exception of Hcc. hamelinensis following exposure to argon particles. All three strains showed a high resistance toward X-rays (exposed at the DLR in Cologne, Germany), where Hcc. hamelinensis and Hcc. morrhuae displayed better survival compared to Hbt. salinarum NRC-1. In all three organisms the DNA damage increased in a dose-dependent manner. To determine a biological endpoint for survival following exposure to γ radiation, strains were exposed to up to 112 kGy at the Beta-Gamma-Service GmbH (BGS) in Germany. Although all strains were incubated for up to 4 months, only Hcc. hamelinensis and Hcc. morrhuae recovered from 6 kGy of γ radiation. In comparison, Hbt. salinarum NRC-1 did not recover. The 16S rRNA gene integrity stayed remarkably well preserved up to 48 kGy for both halococci. This research presents novel data on the survival and genetic stability of three halophilic archaea following exposure to simulated outer space radiation.

Item URL in elib:https://elib.dlr.de/111333/
Document Type:Article
Title:The Effects of HZE Particles, γ and X-ray Radiation on the Survival and Genetic Integrity of Halobacterium salinarum NRC-1, Halococcus hamelinensis, and Halococcus morrhuae
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Leuko, StefanUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Rettberg, PetraAstrobiology Research Group, Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany.https://orcid.org/0000-0003-4439-2395UNSPECIFIED
Date:2017
Journal or Publication Title:Astrobiology
Refereed publication:Yes
Open Access:No
Gold Open Access:No
In SCOPUS:Yes
In ISI Web of Science:Yes
Volume:17
DOI:10.1089/ast.2015.1458
Page Range:pp. 110-117
Publisher:Mary Ann Liebert Inc.
ISSN:1531-1074
Status:Published
Keywords:Halophilic archaea, Radiation, Survival
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Space
HGF - Program Themes:Research under Space Conditions
DLR - Research area:Raumfahrt
DLR - Program:R FR - Research under Space Conditions
DLR - Research theme (Project):R - Vorhaben Strahlenbiologie (old)
Location: Köln-Porz
Institutes and Institutions:Institute of Aerospace Medicine > Radiation Biology
Deposited By: Kopp, Kerstin
Deposited On:07 Mar 2017 12:50
Last Modified:03 Nov 2023 14:06

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.